CHAPTER.

Natural (or Free)
Convection

' 10.1 Introduction

In the previous chapter, we studied heat transfer by forced convection, wherein fluid movement was caused by
an external agency such as a pump or fan. In this chapter, we shall study about heat transfer in ‘Natural or free
convection’; here, fluid movement is caused because of density differences in the fluid due to temperature differ-
ences, under the influence of gravity. Density differences cause a ‘buoyancy force’ which in tumn, causes the fluid
circulation by ‘convection currents’. Buoyancy force is the upward force exerted by a fluid on a completely or
partially immersed body and is equal to the weight of the fluid displaced by the body. Obviously, fluid velocity in
natural convection is low as compared to that in forced convection, and as a result, the heat transfer coefficient is
also lower in the case of natural convection. Still, natural convection is one of the important modes of heat
transfer used in practice since there are no moving parts and as a result, there is an increased reliability. Natural
convection heat transfer is extensively used in the following areas of engineering;
(i) cooling of transformers, transmission lines and rectifiers
(i) heating of houses by steam or electrical radiators
(iii) heat loss from steam pipe lines in power plants and heat gain in refrigerant pipe lines in air-conditioning
applications :
{iv) cooling of reactor core in nuclear power plants
{v) cooling of electronic devices (chips, transistors, etc.) by finned heat sinks.

10.2 Physical Mechanism of Natural Convection

Consider the familiar example of a heated, vertical plate kept hanging in quiescent air. Let the temperature of the
heated surface be T, and that of the surrounding air, T,. A layer of air in the immediate vicinity of the plate will
get heated by conduction; density of this heated air layer decreases {since the total pressure of surroundings is
constant and p = pR,; T for an ideal gas). As a result, the heated layer rises up and the cold air from the sur-
roundings moves in to take its place. This layer, in turn, gets heated up, moves up and is again replaced by cooler
air etc. Thus, convection currents are set up causing the heat to be carried away from the hot surface. This
situation is shown in Fig. 10.1 (a).

During the temperature induced flow, a boundary layer is set up along the length of the plate as shown.
With the x-axis taken along the vertical length of plate, and the y-axis perpendicular to it, the velocity and tem-
perature profiles are shown in the Fig. 10.1. As far as the velocity profile is concerned, at the plate surface, the
fluid velocity is zero due to ‘no slip” condition; then, the velocity increases to a maximum value and then, drops
to zero at the outer edge of the boundary layer since the surrounding air is assumed to be quiescent. Note the
difference in this velocity profile as compared to that in the case of forced convection. The boundary layer is
laminar for some distance along the length, and then depending on the fluid properties and the driving tempera-
ture difference between the wall and the ambient, the boundary layer becomes turbulent.
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Analytical solution of natural convection heat transfer is a little more complicated since velocity field is
coupled to the temperature field because the flow is induced by temperature differences. Temperature field is
also coupled to the velocity field, i.e. we say that the velocity and temperature fields are ‘mutually coupled’.
Therefore, to get a solution, momentum and energy equations for the boundary layer have to be solved simulta-
neously. Solutions by the exact and approximate integral methods have been obtained for the simple cases, but
the predicted surface heat transfer coefficients are smaller than the experimentally measured values, because the
analysis do not take into account rate-increasing disturbances (remember: velocities are quite small in free con-
vection) present in actual equipments. Therefore, in handling natural convection problems, we rely mostly on
empirical relations derived as a result of large experimental work.

10.3 Dimensional Analysis of Natural Convection—Grashoff Number
Natural convection heat transfer is a good candidate for dimensional analysis since we can reliably list the pa-
rameters on which this phenomenon depends and the theoretical analysis is rather difficult and we have to
depend mostly on experimental work.

As we stated earlier, in natural convection, flow is induced by the density differences caused as a result of
temperature differences. In the gravitational field, the density differences induce a buoyancy force given by:

By = Ppuia 8 Vioay +(10.1)
where  py,;q = density of fluid
£ = acceleration due to gravity
Vbody = volume of portion of body immersed in fluid
In the absence of other body forces (such as centrifugal, electromagnetic etc.),
Net vertical force acting on the body = weight of body - buoyancy force

ie. Fnet =W - Fﬁ
Le. Frat = Phody 8" Vbody ~ Pluia’ & I‘/!;vod).r
ie. Fret = (Poody ~ Pauid}t 8 Vbody -.(10.2)

Now, the density differences can be related to the temperature differences by the temperature coefficient of
volumetric expansion, f, which is defined as:

B = (1/0).(9v/0T), = —(1/p).(@p/3T), (/K .(10.3)
ie B=-(1/p).(Ap/AT) at constant P
ie. Ap =-p BAT at constant P

For ideal gas, p = pR.T and, = 1/T, where T is expressed in Kelvin.
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TABLE 10.1 Parameters for Natural convection heat transfer

1 Significant length L, (m) L

2 Fluid density p (kg/m®) ML

3 Fluid viscosity # {kg/m.s)) MLt
4 Temperature difference AT {deg.C) T

5 Coefficient of volume expansion BK T

6 Acceleration due to gravity g (m/'s?) L2

7 Th. conductivity of fluid . K (WHm.K)) ML 3T
8 Heat transfer coefficient h (WIHm?.K)) Mt3T!
9 Specific heat of fluid C, (Jkg.K)) L2277

With this background, now let us list out the parameters (and their primary dimensions) on which the
phenomenon of Natural convection heat transfer depends, as shown in Table 10.1.

We see that there are 9 variables listed. Of these, the product fg.AT represents buoyancy forces and is
considered as a single variable. Thus, we can say that there are 7 variables affecting the phenomenon and there
are 4 primary dimensions, viz. (M, L, T and t).

Then, from Buckingham theorem, Number of independent dimensionless groups that can be formed is
equalto7-4=3.

Choosing L, p, g and k as the core group, we write:

m = LA ph ik (g-B-AT) {a)
my=LF Pl K -C, (b}
oy = L2 ph g Kb (c)

(i) Considering Eq. a:
m = MOALOTO 0 = LA (ML (ML) ML T (LD

Equating the coefficients of M, L, T and t on either side of above equation., we get:

M: O=b+c+d

L 0=a-3b-c+d+1

T: 0=+

t 0==<-3d-2

Solving the above set of equations simultaneously, we get:
d=0,¢=-2,b=2,a=3
Therefore, 7, the first dimensionless group is:

2 3 AT) L
o PG BADE (g-ﬂsz) L _r

22

where Gr = Grashoff number
{ii} Considering Eq. b:
my = MOLO T = TP (ML (ML Y ML T (L2 T
Equating the coefficients of M, L, T and ¢ on either side of above equation., we get:
M: O=g+r+s
L O0=p-3g-r+s+2
T 0=-s5-1
t 0=-r-3s-2
“Solving the above set of equations simultaneously, we get:
s=-Lr=1,4=0,p=0
Therefore, 7, the second dimensionless group is:
}u‘cp

= — =

where, Pr = Prandtl number
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(iii) Considering Eq. c :
= MOLL T = LY (ML ML LY (ML T2 (M3 T
Equating the coefficients of M, L, T and ¢ on either side of above equation, we get:
M: O=x+y+z+1
L 0=w-3x-y+z
T 0=-z-1
t 0=-y-3z-3
Solving the above set of equations simultaneously, we get:
z=-Ly=0,x=0w=1
Therefore, ,, the third dimensionless group is:
My = kk—L =Nu
where, Nu = Nusselt number
Thus, for natural convection, we have:
Nu = f(Gr, Pr)
Of course, the exact form of equation with associated constants must be determined from experiments.
As we shall see later, in most of the empirical relations, product of Gr and Pr is taken together and the
relations are presented in the form:
Nu = C.Ra"
where
Ra = (Gr.Pr) = Rayleigh number and ‘C" and ‘m’ are constants determined from experiments.
By determining Nu, we determine #, the heat transfer coefficient in natural convection.
Then, the heat transfer rate for natural convection is given by Newton’s law of cooling, i.e.
Qconv = h'A'(Ts - Ta)f w
Thus, from dimensional analysis, we have established that, in natural convection heat transfer problems,
dimensional groups of significance are: Grashoff number (Gr), Prandtl number (Pr) and Nusselt number (Nu).
Out of these, Gr plays the same role in natural convection as that of Reynolds number in forced convection.
Physical significance of Grashoff number is that it represents the ratio of buoyancy force to the viscous force
acting on the fluid, i.e.
Buoyancy forces g-ApV g BATV
Viscous forces ~ py? v

since Ap = p. BAT.
So, we can write:

§ AT =T}

G, =
2

-(10.4)

where,

g = acceleration due to gravity, m/s’

A = coefficient of volume expansion, 1/K (#=1/T for ideal gases only, T in Kelvin)

T, = temperature of the surface, deg. C

T, = temperature of the fluid at sufficient distance from the surface, deg. C

L. = characteristic length of the geometry, m, and

v = kinematic viscosity of fluid, m*/s

Product of Grashoff number and Prandtl number, i.e. Rayleigh number, Ra = Gr.Pr is the criterion to deter-
mine if the flow is laminar or turbulent, in natural convection. For exampie, in the case of heat transfer by natural
convection for vertical plates, for Ra > about 10°, the flow is turbulent and for Ra < 10°, the flow is laminar.

10.4 Governing Equations and Solution by Integral Method

As stated earlier, in solving natural convection heat transfer problems, we rely more on empirical relations than
on analytical relations. This is due to the fact that analytical relations are rather difficult to obtain since the
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momentum and energy equations are ‘mutually’ coupled; also, analytical relations generally give lower values of
heat transfer coefficients as compared to empirical relations. Also, because of the very low velocities involved in
natural convection, it becomes difficult to take into account all factors in the analytical methods and the insertion
of measuring probes itself introduces disturbances in the flow fields.

So, we shall indicate the development of governing equations for the simple case of heat transfer by free
convection from a heated, vertical plate at a surface temperature T, and the surrounding ambient at a tempera-
ture T, and very briefly give the outline of the solution by the approximate Integral method and give only the
final results.

In general, solution of the problem involves the simultaneous solution of equations of continuity, momen-
tum and energy.

Equation of continuity:
Considering an elemental volume in the two-dimensional boundary layer, with constant properties, the continu-
ity equation remains the same as derived for forced convection, i.e. Eq. 9.15. We rewrite it here as:

{(du/dx) + (dv/ay) =0 ..(10.5)
Equation of momentum:
This is derived by applying Newton’s second law to the differential control volume. Fig. 10.1 (b) shows the
various forces acting on the control volume. Net force acting in the x-direction {= X F,) must be equal to the rate
of change of momentum in that direction.
ie. ZF, = plufou/ox) + v.{du/dy)).dx.dy ..(Eq. A)

See Eq. a under section 9.7.2

As far as L F, is concerned, compared to the case of forced convection, now there an additional force due to
gravity, acting in the downward direction i.e. opposed to the positive X-direction; so, we get

I F, = -(Op/0x)dxdy - pgdxdy + 1"/ 3y )dx.dy .{Eq. B)

See Eq. b under section 9.7.2

Equating Egs. A and B, we get:

pAu.Qu/ax) + v.(Qu/9y)} = —(Bp/dx) - p.g + p@u/ 3 ..(10.6)
Since the pressure gradient in X-direction is due to change in elevation of plate, we write:

@/3%) = —p,g

Therefore, Eq. 10.6 becomes:

2ufdu/3x) + v.0u/oy)) = g.(p, - P + WU/ -(10.7)
Now, the density difference (g, - p) may be related to the temperature difference as follows:

B=(1/V).QV/IT), = I/VI(V - V)/(T - Tl = (0, - p) /lp(T - T,))
So, we get:
plu.@u/ax) + v.Qu/dy) = g.p.HT - T,) + 4(d%u/3y?) ..(10.8)

Eq. 10.8 is the momentum equation for natural convection boundary layer; note that its solution requires a
knowledge of temperature distribution.

In general, volume coefficient of expansion, £ for fluids has to be obtained from data tables; however, for
ideal gases, #= 1/T, where T is the absolute temperature in Kelvin.

Equation of energy:
Again, equation of energy remains the same as derived earlier for forced convection, equation 9.18. We rewrite it
here as:

udT/9x) + v.8T/3y) = a.(3°T/3y"). (10.9)

While solving this problem by the approximate integral method, we make an assumption that the fluid is
incompressible except for the effect of variable density in the buoyancy force, since fluid motion is induced by
this variation. This is known as Boussinesq approximation. And, the flow is with laminar boundary layer, steady,
two-dimensional and with constant fluid properties. Further, since it is the temperature difference that induces
the flow in natural convection, both the hydrodynamic and thermal boundary layers are assumed to be identical,
i.e. thicknesses of both the boundary layers are assumed to be equal, or §= 4,

Integrating Eq. 10.8 over the boundary layer thickness, we get the integral momentum equation:

d d 2 _ ') N
E[L pu dy] =7+ _LP g B(T-T,)dy
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d(é 5 du J
ie ' ldyl = 122 ¢ B-(T - {10.10
e dx( ] o y) (dy}yﬂ} * Iopg AT~ Ty ( )

To solve this, we have to assume the velocity and temperature distributions which satisfy the boundary
conditions, just as we did in the case of forced convection.
For temperature distribution, the boundary conditions are:

T=T,aty=0
T=T,aty=46
and, (0T /oy) =0aty=4
And the temperature distribution which satisfies these conditions is:
2
I-% _ (1 - i) L(10.11)
T, - T, 5
Boundary conditions for the velocity profile are:
u=0aty=0
u=Q0aty=4
and, (ou/oy) =0aty=4

An additional condition from Eq. 10.8 is:
(@%u/9y?) = ~g.B.(T, - T,)/vat y = 0 since both 1 and v are zero at the surface.
And the velocity profile which satisfies these conditions is:

2
u Y ¥
LI -4 (1012
e @& ( 5 ) ( )
Here, u, is a fictitious reference velocity, an arbitrary function of x, since there is no free stream velocity in
natural convection. :
Maximum velocity and its position is determined by differentiating Eq. 10.12 w.r.t ¥ and equating to zero.
The result is;

4
Wpay = E-ux aty =4/3 ..(10.12a)
And, the mean velocity at a section is obtained by integrating the velocity function over the boundary layer
thickness:
sl 50 ()03
Uy = — fudy = —- 1= [1-% ] 4
"t h T h )T
o w o Lly ¥ (10.12b)
le. =" = — s B
m 12 X 48 Hmax
Inserting Eqs. 10.11 and 10.12 in Eq. 10.10 and performing the mathematical operations, one gets:
1 d@wie 1 V-l
= 2N == 0. 8(T. -T.}é = .(10.13
108 dx 3 & BT -T,) (10.13)
Similarly, integrating Eq. 10.9, we get the integral form of energy equation as follows:
é d
4 Iu-(T -Tdy | =- e aT ..(10.14)
dx(Jdo dy )
& y =
Substituting the assumed velocity and temperature distributions in Eq. 10.14, final result is:
1 d(tty -6) (I -To)
—(T.-T)- =2.a .-{10.15
0 {(T,-T) It & (10.15)

Assuming exponential functional variations for #, and § ie. #, = C;.x"% and 6= C,.x'*%, we get the final
result for velocity function and boundary layer thickness in laminar flow as:
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0.5
#y = 517 v-(Pr + 0.952)*-5-[%5_T“)] x5 ..(10.16a)
and,

& 3930952+ PP

..{10.16b
T Grl B pos ( )
Eq. 10.16b gives the variation of & along the height x of the plate. Gr, is the Grashoff number.
Mass flow rate through the boundary:
Mass flow rate through a section for unit width of plate is given by:
e o
m=iy (81)p=L-6p= (& (101
wi81l)p=15-0p 17 0" (10.17)

u, and & are obtained from Eq. 10.16 a & b.

Mass flow between two sections at ¥, and x, can be determined by the difference in values of m (as calcu-
lated from Eq. 10.17) between these two sections.

Total mass flow through the boundary is obtained by putting x; = 0 and x, = L. We get:

Q.25
My = 1.7 0V L N (10.18)
ol = Pr?.(Pr+0.952) o

Heat transfer coefficient is determined from

g, =-k-A- [El =h-A(T;-T,)
dy ).
Using the temperature distribution given by Eq. 10.11, we get:
2k
h=—
g
h-x x
L.e. —= =Nu,=2--
re . U, 5

And the dimensionless heat transfer coefficient (i.e. Nusselts number} is:

. _ 0.508k2Pr" Gro
T (0.952+ P
Average heat transfer coefficient for the vertical plate is obtained by integrating over the height L:

1 &
havg = IJ‘th dx

{using eqn. 10.16(b))...(10.19)

19

h,,=—"Hh .(10.20a
ie =l (10.202)

4 0.667-Pro5.Grt?
TN = e s
3 (0.952 + Pr)

Note that for forced convection over a flat plate, we had Niy,. = 2. Nuy
Above equations are valid for laminar boundary layer flow only
For turbulent boundary layer flow, (Gr-Pr > 10%), by following the integral method, we get:

2
0.565-[1 + U494~PT3]
Sprb _

8
Grol.pr1s

and, Nitgq = .(10.20b)

(Gr-Pr = Ra = Rayleigh number)..{10.21)
x
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and,

0.4
h L 117,
Nit,o = Lf—— = 0.0246 M? {for turbulent flow...(10.22))
1+ 0.495-Pr3
In the above equation physical properties of fluid are taken at the average (film) temperature, ie.
7= 5tT
f 7

An outline of the analytical procedure involved for the simple case of heat transfer by convection from a
heated vertical plate is presented above just to illustrate the fact that even for simple cases, analytical procedures
are rather involved. It is stated again, that this is due to the mutual coupling of momentum and energy equa-
tions.

10.5 Empirical Relations For Natural Convection

Over Surfaces and Enclosures
Free convection patterns from a few commoen geometries are shown in Fig, 10.2.

Cold plate

4 \/f \_//Hot

{b) Hot surface facing up (c) Cold surface facing up

i ;"Hot 7N y/\ ™ Cold

(a) Colzi vertical surface (d) Hot surface facing down (e} Cold surface facing down

FIGURE 10.2 Free convection flow patterns

We shall present below empirical relations for natural convection from several types of surfaces and enclo-
sures of practical impertance. While using the empirical relations, it is important to remember the conditions
under which these relations are valid. Observe that most of the relations are presented in the form: Nu = C.Ra",
where C and m are constants deduced from experiments. Nu is the Nusselt number (= #.L_/k), Ra is the Rayleigh
number (= Gr.Pr); characteristic dimension L, for vertical plates and cylinders is generally the plate (or cylinder)
height L or diameter D for a horizontal cylinder.

10.5.1 Vertical Plate at Constant Temperature T,
Vertical plate is an important geometry since heat transfer from the walls of a furnace can be calculated by the
relations applicable to a vertical plate.
McAdams has suggested the following relations for fluids whose Prandtl number is close to unity, i.e. for air
and other gases, generally:
1
Nu = 0.59- Ra4 .10% < Ra < 10°..(10.23)
1
and Nu =013 Ra3 .10° < Ra < 10™..(10.24)
Eq. 10.23 is for laminar, boundary layer type, natural convection flow, while Eq. 10.24 is for turbulent,

boundary layer type, natural convection flows. Fluid properties are evaluated at film temperature Tj already
defined. '
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Churchill and Chu present following relations for the entire range of Rz and also valid for all Prandtl num- .
bers from 0 to oe.

For 0 < Ra < 10°, 0 < Pr < oo

1

0.670-Ra4
Nu =068 + ——— (D < Ra < 10°...(10.25))
2 o
[ 0.492]“12
1+
Pr
For Ra > 109, 0.6 < Pr < wo;
1
0.15-Ra3

Nu = it (Ra > 10°...(10.26))

J

[0.492 )E
+ R
Pr
For Ra > 10°, 0 < Pr < 0.6:
r 12
1
. 6
Nu ={0.825+ 0.387-Ra 5 (Ra > 10°..(10.27))
9 ez
[0.492]16
1+
Pr
L J

Eq. 10.25 is for fluids whose Pr is not too close to unity {or, to that of air). Eq. 10.26 is for high Prandtl no.
fluids, and Eq. 10.27 is for low Pr fluids i.e. for liquid metals.

In the above equations characteristic dimension for N and Ra is the height L of the plate; fluid properties
are evaluated at the film temperature Tj.

For inclined plates (inclined at an angle  to the vertical), vertical plate relations can be used by replacing g
by g.cos(#) for Ra < 10°. Inclined length L is the characteristic dimension. :

10.5.2 Vertical Cylinders At Constant Temperature T,

A vertical cylinder can be treated as a vertical plate and the relations given above can be applied if the following
criterion is satisfied:

2 ...(10.28)

Rat
Height L of the cylinder is the characteristic dimension.

10.5.3 Vertical Plate With Constant Heat Flux
Equations of Churchill and Chu, 10.25 and 10.26 are valid, with the following modifications: (a) temperature of
the constant flux plate is considered at a point mid-way between top and bottom (b} constant 0.492 should be
changed to 0.437.

Alternative relations are given below for vertical and inclined plates for natural convection in water and air.
Here, a modified Grashoff number, G’ is defined:

=]
b

4

’ gﬁqsx
Gr’' = Gr-Nu, = ——— ..(10.29
t ¥ INU, r. 7 ( )
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where 4, is the wall heat flux in W/m”. Then the following two relations are recommended for local heat transfer
coefficients in laminar and turbulent ranges respectively:
Nu, = 0.60-(Gr*-Pr)*® (10° < Gr, < 10'..(10.30))
and, Nu, = 0.17-(Gr* Pr)>® (Gr, > 10"..(10.31))
And the average heat transfer coefficient in the laminar region is obtained by integration over the entire
height L of the plate as:

h= g-hL . (for laminar...(10.32))
and, for turbulent region, %, is independent of x:
h=h (for turbulent...(10.33))

Exemple 10.1. A hot plate 30 cm high and 1.2 m wide at 140°C is exposed to ambient air at 20°C. Using the approximate
solution, calculate the following:

(i) Maximum velocity at 12 cm from the leading edge of the plate (i) boundary layer thickness at 12 cm from the
leading edge of plate (iii) local heat transfer coefficient at 12 cm from the leading edge of the plate (iv) average heat
transfer coefficient over the surface of the plate (v) total mass flow through the boundary {vi) total heat loss from the
plate, and (vii) temperature rise of air
Solution.

Data:
L:=03m W:=12m Ts = 140°C Ta := 20°C x:=012m g =981 m/s?
We need properties of air at film temperature T = (140 + 20}/2
T, = 80°C
Properties of air at 80°C:
pi=100kg/m®  v:=2109x10° m¥/s  Pr:=0692 k:= 003047 W/(mK)  Cp:= 1009 J/(kgK)

8= m (coefficient of volume expansion...Note that temperature must be in Kelvin)
ie f=2833x102%1/k
Grashoff number:
Atx=012m: Gr, = S'ﬂ'(TsV; T,)-2°
ie. Gr, = 1.296 x 10°
AtL=03m Gr, = s-ﬁ-(TsVZ—Tﬂ)-L3
ie. Gr, = 2.024 x 10

(i) Maximum velocity
To calculate this, first we need the velocity function 1. We have from Eq. 10.16a:

0.5
u, = 5.17-v(Pr + 0.952)-0-5-[&@] a3 .{10.16a}
v
ie. u, = 2551 m/s ' (velocity function)
Therefore, maximum velocity is given by:
4
Y = E;}-;-u, ..{10.12a)
ie. Umax = 0.378 mfs
(ii) Thickness of boundary layer:
We have:
5 3.93.(0.952 + Pr)*®
2T TG B -.(10.16b)
X 0.25
ie. 5= 3.93-(0.952 + Pr)" =
Grl = peos
ie. §=0.0107 m = 10.7 mm.
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(iii) Heat transfer coefficient

We have:
N = 0.508- Pr®®. G % ' 1019
T (0952 + Py -(1019)
ie. Nu, = 22.39 (Check Nu, = 2.x/ 8 = 22.43...checks)
Therefore, hy = Nuy k
x
ie. h, = 5.685 WHm*K) (heat transfer coefficient)
Heat transfer coefficient at x = L:
Nu -k
T
. 0.508-Pr"* G ® k
(0.952 + Pr)*™ L
ie. By = 4521 W/{’K) (heat Fransfer coefficient at x = L)
(iv) Average value of heat transfer coefficient:
4
Ry = -3—~hL ..{10.20a)
ie. by = 6.028 W/Hm’K) (average heat transfer coefficient)

(v} Total mass flow rate through boundary layer:
We have, from Eq. 10.18

.25
Gr
Myl = L7 P V| —————= .(10.18
toat ? [Pr2 (Pr+ 0.952)] (1018)
ie. My = 454 % 1077 kgs.
{vi) Heat transfer from the plate:
Q=g A (T, - T W (where A, = surface area of both the surfaces of plate)
ie. Q= by @ LW) (T, - T, W :
ie. Q= 520855 W (total heatl transfer from plate.)
(vii) Temperature rise of air:
We have: Q@ = Mg Cp AT
ie. AT —2
s 'Cp
ie AT = 113.699 deg. C.

Example 10.2. A furnace door, 1.5 m high and 1 m wide, is insulated from inside and has an outer surface temperature
of 70°C. 1f the surrounding ambient air is at 30°C, calculate the steady state heat loss from the door.
Solution.
Data:
L:=15m W:=10m T,=70°C T,:=30°C g:=981m/s
We need properties of air at film temperature Ty = (70 + 30)/2

Ty = 50°C (film temperature)
Properties of air at 50°C:
p = 1.093 kg/m’ y:=17.95 x 107 m®/s  Pr = 0.698 = 0.02826 W/(mK)  C, = 1005 ] /kgK)
B= 1 (coefficient of volume expansion...Note that temperature must be in Kelvin)
(T +273)
ie. =309 x107° 1/K
Grashoff number:
AtL=15m: Gr, = 8L LI
v
Le. Gr = 1.273 x 107
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Rayleigh number:

Ra = Gr;-Pr
ie. Ra = 8.882 x 10°
" Then, applying Eq. 10.24, we get:
N !
Nu = 0.13-Ra 3 (10° < R, <102..(10.24))
ie. Nu = 269.227 (Nusselt number)
-k .
Therefore, b= Nl; W/(m?K) (heat transfer coefficient)
ie h = 5.072 W/(m?K) (heat transfer coefficient)
Heat loss:
Q=hA(T,-T) W (heat loss from outer sutface)
ie. Q= h(LW)(T,-T), W
Le. 3=304334 W (heat loss)

Alternatively, we can apply Eq. 10.26:

1
0.15-Ra®

Nyw= ——" (Ra > 10°..(10.26))
iz
(0.492)16
1+ -
Pr
ie. Ny = 217.746
Nu-k > )
Therefore, h= < W/ (m“K} (heat transfer coefficient)
ie. h = 4102 W/(m’K) (heat transfer coefficient)

And,
Q=h(L-W)I,-THW :
ie. J=24614 W (heat loss)
Difference between the two values of () obtained is about 19%
Exomple 10.3. In a nuclear reactor core, parallel vertical plates, each 2.5 m high and 1.5 m wide, heat liquid Bismuth by
natural convection. Maximum temperature of the plates should not exceed 755°C and lowest allowable temperature of
Bismuth is 320°C. Calculate the maximum heat dissipation from both sides of each plate.
Solution.
Data:
L=25m W:=15m T,:=755°C T,=320°C g:=981m/s
We need properties of air at film temperature T, = {755 + 320}/2
Ty := 537.5°C (film temperature)
Properties of Bismuth at 538°C:
p= 99 kg/m*  vi=108x107 m¥/s  Pr:=0011  k:= 1558 W/(mK)
C, = 1545 J/(kgK)  f:=0.126 x 10 1/k
Note that we cannot put §=1/(T; + 273), since Bismuth is a liquid, and not ideal gas. Instead, we should read the
value of g from data tables.
Grashoff number:

gﬂ(Ts _Tn)'L3

AtL=25m: Gry = 5
v
ie. Gr, = 7.203 x 10"
Rayleigh number:
Ra := Gry-Pr
ie. Ra = 7.923 x 10"

Then, applying Eq. 10.27 we get:
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ie.

ie.

ie.
ie.
ie.

1
0.387.Ra®

Nu = | 0,825+ — (Ra > 10°..{10:27))
e
(0.492 )E z
1+
Pr
Nu = 834.346 (Nusselt number)
Nu-k
Therefore, b= 22 wWmKy (heat transfer coefficient)
h =52 x 10> W/(m’K) (heat transfer coefficient)
Heat loss:
Q=h2-AAT,-T) W (heat loss from both surfaces of plate)
Q= h2L-W{T,-T), W
O=16% x 10° W {heat 10ss.)
2 =1696 MW (heat loss from each plate. )

Exumple 10.4. A vertical steel plate, 0.4 m x 0.4 m in size and 3 mm thick, at an uniform temperature of 180°C, is exposed
to atmospheric air at 20°C. Find the approximate time required for the plate to cool to 30°C, if the heat transfer coeffi-
cient in natural convection for the vertical plate is given by: k = 1.42 x (AT/ L)V, For steel, p = 7800 kg/m’, C,=473)/
(kgK)

Sofution.

Data:

ie.

L=04m W:i=04m $:=0003m p:=7800kg/m® Ta:=200C Ts:=180°C g:=981 m/s’
A=LWm ie A=0l6m’ C,:=473])/(kgk)

At any instant, let the temperature of the plate be T Then, we can write the heat balance:

Rate of decrease of enthalpy of the plate = rate of instantaneous heat transfer from plate by convection

—m-Cp£ =h-2-A)-(T - Ta) ({a)...areas on both the sides of the plate lose heat by convection)
dr

where m is the mass of the plate

Put: #=(T-T,)
Then, 4o _ T
dr dr

And Eq. a becomes:
~-d8 _ 2hA

—_ = 8 .(b
dr m-C, (®)
Now, mass of plate: m:= (L-W-1) pkg
m= 3744 kg

1
Now, heat transfer coefficient: k = 1.42- [(T—;—T“—)]q

1
h = 1.78556 @*, since #={(T-T)
Substituting in Eq. b:

5
249 _ 500647 x 10464 c)
dr
Integrating Eq. ¢
-1
4.6+ =322647 x 107474 C, (d)

where C, is the integration constant.

To find C,, use the initial condition, ie. at 7= 0, 8= 180 -~ 20 = 160°C:
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-1

ie. Cp = 416079
ie. C, = 1.12468

Therefore Eq. d becomes

N -1
64 = 8.06618 x 107 ¢ + 0.28117 (e}

Eq. e gives the temperature of the plate at any time 7.

Time required for the plate to reach 30°C:

i.e. T = 30°C
Therefore, 8:=T-Ta
ie. 6= 10"C

Then, from Eqg. e:

-1

_ 8% —0.28117
8.06618 x 1077
ie. 7= 3486 x 10° s ’
ie. 7= 0.968 hrs.

Example 10.5. A vertical pipe, 15 cm OD, 1 m long, has a surface temperature of 30°C. If the surrounding air is at 30°C,
what is the rate of heat loss by free convection per metre length of pipe?

(b) If the pipe is inclined to the vertical at an angle of 30 deg. during installation, how does the heat loss/m change?
Solution,
Data:

Li=10m D:=015m T, :=30°C T, =90°C g := 9.81 m/s’

Now, film temperature is (90 + 30)/2 = 60°C.
ie. Ty i= 60°C

Froperties of air at 60°C;

vi= 1897 x 108 m?/s  Pr.= 0696  k := 002896 W/(mK)

Bi= m (coefficient of volume expansion...Note that Temperature must be in Kelvin
!
ie. F= 3003 x 107 1/K
Grashoff number:
. . —_ . 3
Gr, = SLTIL
v
ie. Gry = 4912 x 10°

Ra; == Gr;-Pr
Rayleight number:
ie. Ra; = 3419 x 10°
Now, to apply the vertical plate correlations for this case of a vertical cylinder, let us confirm the following condi-
tion:

% > 34‘ .(10.28)
Raf
% =015 and, 341 = {1141
Rat
Therefore, Eq. 10.28 is satisfied, and we can apply the vertical plate Eq. 10.24:
i
Nu = 0.13- Raj (10° < Ra < 107...(10.24))
ie. Nu = 195.836 (Nusselt number)
Therefore, h= Nu-%
ie. : h = 5671 W/(m’K) (heat transfer coefficient)
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Heat loss/meter length of pipe:
Q = h{z-D)-(T, - T,) W/m

ie. : Q = 160.356 Wim.
Alternatively:
We can use Eq. 10.27
_ 7
1
0.387 - Ra®
Nu = 0825 + ——— {Rey > 10°...(10.27))
9
{0.492]75 o
+ it —
Pr
ie. Nu = 179.503 {compare with Nu = 195.836, oblained using Eq. 10.24}
Therefore, h = Ni %
ie. k= 5198 W/(m?K) (heat transfer coefficient)
and,
_ Q = h-(z-D)-(T, - T.) W/m
ie. Q = 146.981 Wim (compare with 160.356 W/m obtained earlier.)
(b) When the pipe is inclined at 30 deg. to vertical:
& =30 deg.
But, while using Mathad, arguments to trigonometric functions must be in radians.
ie. g:= 3(]-1 radians
180
ie. @ = 0.524 radians
1
We use Nu := 0.13-(Ra; -cos(6) *
ie. Nu = 186.668 (Nusselt number)
Therefore, b= Nu-% .
ie. h = 5.406 W/(m’K} - {heat transfer coefficient)

Heat loss/metre length of pipe:
Q= h(xD)(T,- T) W/m
i.e. Q= 152849 W/m.

10.5.4 Horizontal Plate at Constant Temperature T,
Here, the characteristic length to be used in expressions for Nu and Gr is:
L =A/P
where, A is the surface area and P is the perimeter.
Property values are evaluated at film temperature, Tj.
ta) Upper surface of a hot plate (or, lower surface of a cold plate):

1
Nu = 0.54 Ra* _ (10* < Ra < 107...(10.34))
and,

1
Nu = 0.15 Ra3 (107 < Ra < 10'...{10.35))
(b} Lower surface of a hot plate {or upper surface of a cold plate):
1
Nu =027-Ra* (10° < Ra < 10M..(10.36))
Example 10.6. A hot, square plate, 50 cm x 50 cm, at 100°C is exposed to atmospheric air at 20°C. Find the heat loss from
both the surfaces of the plate: ,
{i) if the plate is kept vertical
(i) if the plate is kept horizontal.
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Properties of air at mean temperature of 60°C are given below: p = 1.06 kg/m’,
k = 0.028 W/(mK), v=18.97 x 10 m*/s, C, = 1.008 kJ/{kgK).
Following empirical relations can be used:
Case (i): Nu = 0.13 x (Gr.Pr)1/3
Case (ii): Nu = 0.71 x (Gr.Pr)!/* for the upper surface, and
Nu = 0.35 x (Gr.Pr)'"? for the lower surface. {M.U. 1995)
Solution,
Data:
Li=05m W:=05m T, := 100°C T, :=20°C g = 9.81 m/s”
We need properties of air at film temperature T, = (100 + 20}/2
Ty = 60°C
Properties of air at 60°C :
pi=106kg/m’  vi=1897x10° m’/s  xi= 0028 W/(mK)  C,:= 1008 ]/(kgK) jiz= vp

C,-
ie. p=2011x1W07kg/ms Pri= =5 iepr=oru  fi= T +1273

-

ie. B=3003x1071/K
Case 1: Plate held vertical:
Now, the characteristic length is the vertical side, L

- Lg T

Gr: i
ie Gr = 8.816 x 10° (Grashoff number)
and, Ra:= Gr-Pr
ie. Ra = 5926 x 10® (Rayleigh number)
Therefore,
1
Nu = 0.13-(Gr-Pr) 3
ile. Nu = 109.194 (Nusselt number)
and, ho= k-Nu
L
ie. h = 6115 W/(m’K) (heat transfer coefficient)
Therefore, heat transferred:
Qu=k2LW)(Ts-Ta) W (heat transfer from both surfaces)
ie Q=244594 W . (heat transfer from both surfaces)

Case 2: Plate held horizontal:
Now, Characteristic length L= surface area of plate/Perimeter

b _L. W___
2L+ W)
i.e. L=0125m
3 o AT _ S
Thenr Gr = MT_")
VZ
ie Gr=1.279 x 107 (Grashoff number)
Therefore, Ra := Gr-Pr (Rayleigh number)
ie. Ra = 9.259 x 10¢

For upper surface:

1
Nitypper = 0.71-Ra !

ie. Nt ypper = 39.166 (Nusselt number)
Nt ek -

and, Bupper © = — (heat transfer coefficient)

Hypper = 8773 W/(m?K) (heat transfer coefficient for upper surface)

Qupper = huppe;(LW)(Ts - Ta)
ie o Lupper = 175462 W (heat transfer from upper surface)
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For lower surface:

1]
Nitjer := 0.35-Rat

ie Nttygpe, = 19.307 (Nusselt number)
and’ hlower = %.w—k

L
i.e Biwer = 4325 W/(m’K) (heat transfer coefficient for lower surface)
and, Qlower = Mower (LW)(T: - Ta)
ie. Qower = 86495 W {heat transfer from lower surface)

Total heat transferred:
th = Qupper + Qlower
ie. Qe = 261.957 W (Total heat transferred.)
10.5.5 Horizontal Plate With Constant Heat Flux
Here, the characteristic length to be used in expressions for Nu and Gr is:
L. =A/P
where, A is the surface area and P is the perimeter.
For a circle, L, = 0.9D, and for rectangle, L. = (L + W)/2.
All property values, except f3, are evaluated at a temperature, T,, defined by: ‘
T,=T,-025(T,-T) ..(10.37)
and, fis evaluated at T,.
T, is estimated from the basic relation:
Pavg (Ts = T} = 45 : ..{10.38)
{a) Upper surface of a hot plate (or lower surface of a cold plate):
1

Nu = 0.13-Ra3 (Ra < 2 x 10°...(10.39))
and, .
1
Nu =0.16-Ra’ (2 x 10° < Ra < 10"...(10.40))
th} For heated surface facing downward:
Nu = 058 Ra*? (10° < Ra < 10"..(10.41})

As in the case of vertical plates with constart heat flux, in this case also, iteration will be required while
solving problems.
Exumple 10.7. A horizontal metal plate, 0.5 m X 0.5 m, is exposed to sun and receives radiant energy at the rate 180
W/m2, If the heat transfer from the plate occurs to the surrounding air at 20°C by free convection only, find the steady
state temperature of the plate. Assume that the bottom of the plate is insulated.
Salution. The plate is subjected to constant heat flux. We do not know the surface temperature. So, we can assume either
the surface temperature or the heat transfer coefficient to start with, proceed with the calculations, repeat if necessary.
Data:

L=05m W:=05m Q :=180W/m* T,:=20°C g:=98] m/s®

Let us assume the surface temperature to be 60°C. T, '= 60°C

This is consant flux condition. So, we need properties of air at T,

T,:= T,-025(T,~ T,

ie. T, = 50°C

Properties of air at 50°C:

yio 1705 x 1076 m?/s ko= 0.02826 W/(mK)  Pr:=0698  fi= = +1273 ie f=3413x10°1/K
Now, for horizontal plate, Characteristic length L, = surface area of plate/Perimeter
W
P
2(L+W)
ie. ) L.=0125m
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LgfT-1,)
2

Then, Gr =
v
ie Gr = 8.118 x 10° (Grashoff number)
Therefore, Ra = Gr-Pr , (Rayleigh number)
ie. Ra = 5.667 x 10
Therefore, for upper surface of horizontal plate losing heat, we have:
1
Nu = 0.13-Ra? (Ra < 2 x 10%..(10.39))
ie. Nu = 23.177 (Nusselt number)
and, h = Nu- LL . (heat transfer coefficient)
ie. h =524 W/(m%K) (heat transfer coefficient)

Therefore, equating the heat received by plate to the heat transfer from the plate by convection:
gAL- W) = h-(L-W)AT,-T)

Therefore, T, = %-((f—vv:)} + T,
ie. T, = 54.353°C .
We had assumed T, to be 60°C. So, let us repeat the calculations with T, = 56°C
T, = 56°C )

We need properties of air at film temperature T,
T,=T,-025(T,-T)
ie T, = 47°C
Properties of air at 47°C

vi= 17.7 x 107" m¥/s (kinematic viscosity)
k= 0.0275 W/ (mK) (thermal conductivity)

Pr=0.71 (Prandtl number)

1
A= T, +273
ie. B=3413x 1072 1/K
Then, Gr = -——Lf g AT -T)
i
ie. Gr = 7.514 x 10° {Grashoff number)
Therefore, R,:= Gr-Pr (Rayleigh number)
ie. Ra = 5335 x 10°
Therefore, for upper surface of horizontal plate losing heat, we have:

Nu = 013-Ra (Ra < 2 x 10 _(10.39))
ie. Nu = 22716 (Nusselt number)
and, h = Nu»fk- (heat transfer coefficient)
Le. h = 4.997 W/ (m’K) (heat transfer coefficient)

Therefore, equating the heat received by plate to the heat transfer from the plate by convection:
Qo (L-Wy=h(L-W)(T,-T)

Therefore, T, = 4 LW) +T,
hAL-W)
ie. T, = 56.018°C
We had assumed T, to be 56°C, whereas now, we got T, = 56.018°C. This is in very good agreement.
Therefore, T, = 56°C (steady state surface temperature of plate.)

10.5.6 Horizontal Cylinder At Constant Temperature

Here, D, diameter of the cylinder is the characteristic dimension.
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For heat transfer from (or to) a horizontal cylinder, Morgan recommends following correlation for fluids
with (0.69 < Pr < 7): '

Nu=C-Ra" ..(10.42)
where C and n are obtained from the following Table:

TABLE 10.2 Constants for use in Eq. 10.42

10710102 0.675 0.058
1072107 1.02 0.148
102-10* 0.85 0.188
10°-107 0.48 0.25
107-10" 0.125 0.333

Also, the following correlation of Churchill and Chu may be used for the complete range of Prandtl num-
bers: (0 < Pr < =) and for a wider range of Rayleigh numbers:

- 12

i 1
Te
Nu = |0.60+0.387. Re (10 < Ra < 10"..{10.43))
)
(0.559 )ﬁ
14| =22
Pr
And, only for the laminar range:
1
518-Rard
Nu =036 + ——0&~—4 {10°® < Ra < 10°...(10.44))
)
[U‘SSQJE
T4 —=——
Pr

Properties in the above equations are evaluated at film temperature, D is the characteristic dimension.
Churchill and Chu recommend that above two eqns. may be used for constant flux conditions too, with the
temperature T, being half way up the cylinder at the 90 deg. angle from bottom.

For thin wires: (D = 0.2 mm to 1 mm): Rayleigh number is usually very small and a film type of flow
pattern is observed. Following correlation is used:

1
Nup, = 1.18-(Rap)8 {Ra < 500...(10.45))

Heat transfer from horizontal cylinders to liquid metals may be calculated from:
1
Nup, = 0.53-(Grp-Pri)4 ..{10.46)

Exemple 10.8. A horizontal, steam pipe of 10 cm OD runs through a room where the ambient air is at 20°C. If the
outside surface of the pipe is at 180°C, and the emissivity of the surface is 0.9, find out the total heat loss per metre
length of pipe.
Solution. The pipe is horizontal and loses heat by natural convection as well as radiation, Diameter D is the characteris-
tic dimension to calculate Rayleigh number.
Data: ' )

Di=01m L:=10m = 180°C. T,=20°C g¢:=98lm/s’ £=09  o:=567x 1078 W /{m’K*)
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We need properties of air at film temperature T, = (180 + 20)/2
Ty := 100°C (film temperature)
Properties of air at 100°C:
pi=0946 kg/m®>  v:=23.02x10°m¥/s  k:=003127 W/(mK)  C,:=10113]/(kgK)  Pr:=0704
1

= ia =268 x 107 1/K
B T, 273 ie yi) x /
Then Cr= AT -T)D
, : 7z
ie. Gr = 7.94 x 10° {Grashoff number)
Therefore, Ra := Gr-Pr (Rayleigh number)
ie. Ra = 5.59 x 10°
To find Nusselt number, we use Eq. 10.43:
- ] a7
3
Nu := |0.60+0.387- ke — (107 < Ra < 10"2..(10.43))
21¢
[0.559 Jlﬁ
1+ P J
-
ie. Nu = 23.788 ‘ (Nusselt number)
And, ho= Nu~% (heat transfer coefficient)
ie. h = 7438 W/(m°K) _ (heat transfer coefficient)

Therefore, heat loss by natural convection:
 Qegay = (e D-L) (T, - T} W/m
ie. Qoo = 373.897 W/m
And, heat loss by radiation:
Remember that, here, the temperatures must be in Kelvin.
Qug = e(xD-L)-al(T, + 273)* — (T, + 273)*] W/m
ie. as = 556.947 W/m
Therefore, total heat loss from pipe surface:
Qtot = Qconv + Qrad W/m
ie. Qrot = 930.844 W/m
Note that in this type of problems, radiation heat loss is quite comparable to the natural convection heat loss and
must, therefore, always be considered.
Alternatvely:
We can also use Eq. 10.42 to find out Nu, to determine the convection heat loss:
Nu = C-Ra" ..{10.42)
Where constants C and # for R, = 5.59 x 10° are obtained from Table 10.2 as:
C:=048 n:=025

Therefore, Nu := C-Ra"
ie. Nu = 2334 (Nusselt number...compare with Nu = 23.788 obtained earlier)
And, h:= Nu--g (Reat transfer coefficient)
ie k= 7298 W/(m?K) (heat transfer coefficient...compare with k = 7.438 obtained earlier)

Therefore, heat loss by natural convection:
Qeony = h-(wD-L)(T, - T,) W/m
i.e. Qeone = 366.859 W/m (compares with 373.897 W/m, gof earlier.)
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And, total heat loss from pipe surface:

Qtnl = Qconv + Qrad W/m
ie. Qroe = 923.806 W/m.

Example 10.9. A tank contains water at i5°C. The water is heated by passing steam through a pipe placed in water. The
pipe is 60 ¢m long and 4 cm in diameter and its surface is maintained at 85°C. Find the heat loss from the pipe if:

(i) the pipe is kept horizontal
(ii) the pipe is kept vertical.
Following empirical relations may be used: Nu = CAGr.Pr)", where
C =053 and m = 0.25 when 10* < Gr.Pr < 10°, and
C =013 and m = 1/3 when Gr.Pr > 10°.
Following data may be used:
Properties of water at average temperature of 50°C are:
T;=50°C  pi=988kg/m’  vi=556x W07 m?/s  C,= 4178 ]/(kgK)
k= 0647 W/(mK) B:=51x10"1/K
Other data:

(M.U., 1998)

L:=06m D:=004m . = 85°C T, = 15°C g =981 m/ss = vpie p=5493x 10~* kg/(ms)

C..
Pr:= Pk'u ie. Pr:=23.547

Case 1: Pipe held horizontal:
Diameter D is the characteristic dimension to calculate Ra.

A= DL m?
ie. A= 0075 m?
And, G D8 LT
v
Gr=7.25 » 107
And, Ra := Gr-Pr .
ie. Ra = 2.572 x 108
Then, we have:
Ny := 053 -Ra"®
ie. Nu = 67.118
Nu-k
and, b= )
ie. k= 1.086 x 10* W/(m?K)

And heat transfer is given by:
Qhorizl = h-A(T, - T
ie. Chosi = 573 x 10° W
Case 2: Pipe held vertical:
Now, the length L is the characteristic dimension to calculate Ra.

. DgB-T)

Wg have: Gr >
ie. ) Gr = 2.447 x 10"
and, Ra = Gr-Pr
ie. Ra = 868 x 10U

And, Nu = 0.13-Ra
ie. Nu = 1.24 x 10°

Nu-k

and, =
ie h = 1.337 x 10° W/(m*K)

And heat transfer is given by:
Quen = hA(T,-T)
ie. Quur = 7058 x 10° W
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Exomple 10.10. A fine wire of (0.2 mm diameter is maintained at a constant temperature of 64°C by an electric current.
The wire is exposed to air at 1 bar and 10°C. Calculate the electric power necessary to maintain the wire temperature if
the length of wire is 1 m.
Selution.
Data:

L=10m D:=2x10*m T,=64°C T,:=10°C g =981 m/s

Properties of air at film temperature of (64 + 10}/2 = 37°C are:

CT=37C pr= 1143 kg/m® yi=16.7 x 107 m?/s C, =1006 J/(kgK) k= 0.0268 W/(mK)

1
Pr:=0.711 = 1/Kie. ff=3226 107 1/K
b= VKie h /
Diameter I} is the characteristic dimension to calculate Ra.
A=zDLm (surface area)
ie. A= 6283 x 107 m? (surface area)
3 . -
And, 6 DL BT
VZ
Gr = 0.049018 (Grashoff number)
And, Ra := Gr-Pr
i.e. Ra =0.035 (Rayleigh number)
Then, applying Eq, 10.45, we get:
1
Nup == 1.18-(Ra)? (Ra < 500...(10.45))
ie. Nup = 0.776 (Nusselt number)
and, h = Nup'% (heat transfer coefficient)
ie. h = 103.936 W/{m’K) (heat transfer coefficient)

Therefore, rate of heat loss from wire;
Q= hA(T, - T,) W/m

i.e Q= 3526 W/m
i.e. Power required to maintain the surface temperature at 64°C = 3.526 W
Alternatively:

We can use Eq. 10.42:
. Nu = C-Ra" .(10.42)
Where constants C and » are obtained from the Table, corresponding to Ra = 0.035:
C:=1.02 and n = 0.148

Then,
Nu := C-Rq"
ie. Nu = 0.621 (Nusselt number)
and, ' b= Nu-% (heat transfer coefficient)
ie h = 83.168 W/(mzl() (compare this with b = 103.936 obtained earlier.)

Therefore, rate of heat loss from wire:
Q= h-A(T,-T,) W/m
ie. Q=2822W/m {compare this with Q = 3.526 W/m oblained earlier.)

10.5.7 Free Convection From Spheres

Sphere diameter D is the characteristic dimension. Yuge recommends following correlation for average Nusselt
number for free convection between a sphere and air. Properties are evaluated at the film temperature.
1
Nu =2 + 0.43-(Ra)4 (1 < Ra < 10°, Pr = 1..(1047))
For higher range of Ra:

’ _
Nu =2 + 050-(Ra) ¢ (3 x 10° < Ra < 8 x 10°...(10.48))
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Example 10.11. A sphere of 25 mm diameter, with its surface temperature at 100°C, is kept in still air at a temperature of
20°C. Determine the rate of convective heat loss. :
Solution,
Data:

D=25%x107m T,:=100°C T,=200C g:=98lm/d

Properties of air at film temperature of (100 + 20}/2 = 60°C are:

Tp=60°C  vi= 1897 x 10 m%/s  k:= 00289 W/(mK)  Pr:=06% f:= Lk
T +273
ie. f=3003 %107 1/K
Diameter D is the characteristic dimension to calculate Ra.
A= mD* m? {surface area of sphere)
ie. A=196x10" m (surface area)
And, Gre 28 ATT)
VZ
Gr = 1.023 x 10° (Grashoff number)
And, Ra := Gr-Pr
ie. Ra = 7.122 x 10* {(Rayleigh number)
Then, using Eq. 10.47:

Nu = 2 + 0.43-(Ra)'/* (1 < Re < 10°, Pr = 1..{1047))
ie. Nu = 9.025 (Nusselt number)
and, h:= Nu-% (heat transfer coefficient)
ie. B = 10454 W/(m’K) (heat transfer coefficient)

Therefore, rate of heat loss from sphere:
Q=hAT-T)W

ie. Q=162 W
10.5.8 Free Convection From Rectangular Blocks and Short Cylinders
Here, characteristic length L is defined as:

_ Lyly

L HT LV

where Ly, is the longer of the two horizontal dimensions and Ly, is the vertical dimension. Based on this character-
istic length, the heat transfer correlation is:

..(10.49a)

1
Nu; = 0.55-(Ra)4 (10* < Ra; < 10°...(10.49))
For short cylinders (D = H):
Nu = 0.775-(Ra)*2® .(10.50)
Example 10.12. A ceramic block is of 0.3 m x 0.2 m section and is 0.3 m in height. Surface temperature of the block is
380°C. If it is exposed to air at 20°C, determine the rate of convective heat loss,
Solution,
Data:
Ly=03m Ly=03m T,:=380°C T,=20°C g:=981 m/s’
Properties of air at film temperature of (380 + 20}/2 = 200°C are:

Tp=200°C  vi= 3457 x 10°m?/s  k:= 003781 W/(mK)  Pr:=0699 f:= 1 /K
T, +273
ie. B=2114%x1071/K
The characteristic dimension to calculate Ra, is:
_ LuLy
ULy 4Ly
ie. L=015m
Also, A:=2-(0303) +2:(0.2.03) + 2-(0.3-0.2) m? (surface area of the block)
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ie. A= 042 m® (surface area)

g p(T,-T,)
V2

Gr = 2.109 x 107 {Grashoff number)
and, Ra .= Gr-Pr
ie. Ra = 1474 x 107 (Rayleigh number)

And, Gr =

il

Then using Eq. 10.49 we get:

1
Ny = 0.55-(Ra)* (10* < Ra < 10°...(10.49)
ie. Nu = 34.078 {Nusselt number)

and, h=N % (heat transfer coefficient)

ie. h = 8.59 W/(m?K) (heat transfer coefficient)

i

Free convection for various shapes
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FIGURE Exomple 10.12 Graph of log(Ra) vs. log{Nu) fer various shapes in free convection with various
fluids

Therefore, rate of heat loss from the block:
Qi=hA(T.-T)W

ie. Q=129 %x10°W
Alternatively:
Based on experimental data for vertical plates, vertical cylinders, horizontal cylinders, spheres and blocks to various
fluids such as air, water, alcohol and eil, King has drawn the following curve of log(Ra) vs. log(Nu). Here, fluid proper-
ties are evaluated at the film temperature and the characteristic dimension (L) to be taken to determine Ra and Nu are:
for a vertical plate L is the height, and for long, horizontal cylinder, L is the diameter, and for a short cylinder or
biock, 1/L = (1/Ly) + (1/Ly). For a spheére, radius is the characteristic dimension.

Above Fig. Example 10.12 is expected to give fair estimate of convectton coefficient for objects other than horizontal
cylinder and piate. This figure can also be used for more common shapes when the Rayleigh number is outside the range
of the specific correlation for that shape.

Now, in this problem: Ra = 1.474 x 107
Therefore, log(Ra) = 7.168
Using this value in the x-axis of above Fig. Example 10.12 we get:
‘ log(Nu) = 1.55
ie. Nu =104
ie. Nu := 35.481
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and, . k= Nu’% " (heat transfer coefficient)

ie. k = 8.944 W/(m’K) (heat transfer coefficient)
Compare this value of h with k = 859 W/ (m*K), got earlier.
Therefore, rate of heat loss from the block:
Qu=hAT,-T)W
ie = Q=1352x10°W
Compare this value of () with () = 1299 W, obtained earlier.
10.5.9 Simplified Equations For Alr

Since air is the common fluid in most of the free convection problems encountered in practice, it is useful to have
simplified relations for those situations:

TABLE 10.3 Simplified equations for free convection to air at atmespheric pressure (constant wall temp.)

‘Sutace . .| Laminartot<(@GrPp<1e® )
1

. ) AT 2 1

Vertical plate or cylinder h=142 e h=131{AT?
1

. . AT \a 1

Horizontal cylinder h= 132(?) h=124-(AT)%

Horizontal plate:
AT

1

- 1
Heated plate facing upward, or b= 1_32.(__J" h=152.(AT)?
cooled plate facing downward L

Heated plate facing downward,

1
AT Y3
or cooled plate facing upward

h= 0.59-(—
L

where h = heat transter coefficient, L = vertical or horizontal dimension,
D = diameter, and AT =T, - T,

Spheres h=[2+0392 Gr}* % for 1 < Grg < 10°

For pressures other than atmospheric, multiply the RHS of above expressions as below, where p is.in bar:

p )2
Laminar: _—
1.0132
2
3
Turbulent _P_
{ 1.0132 ]

10.5.10 Free Convection In Enclosed Spaces
Enclosed spaces may be formed by horizontal plates or vertical plates; also, enclosed spaces may be filled with
air or any other fluids. Typical example is a double-plane window, or a vacuum flask or a cryogenic container
involving concentric eylinders or spheres. Correlations for convection heat transfer for such situations are given
below.
Fig. 10.3 shows the horizontal and vertical enclosures and the nomenclature used. Here, the space between
the plates, ‘b’ is the characteristic dimension. Properties are evaluated at the average of two plate temperatures.
So, now, Grashoff number for the enclosure is defined as:
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FIGURE 10.3 (A) Free convection in a horizontal FIGURE 10.3 {(B) Free convection in o vertical
Enclosure (T, > Ts) Enclosure (T, > Ty
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Gr, -{10.51)
and, the Rayleigh number for the enclosure is:
- —_ . 3
Ry = §8(M-T)b" (10.52)
V-
For Horizontal enclosure:
For air:
Average Nusselt number (based on plate spacing ‘b’) is given by Jakob:
1
Nu = 0.195-Gr4 , (10" < Gr < 3.7 x 10°..(10.53))
1
And, Nu = 0.068-Gr3 (3.7 x 10° < Gr < 107..(10.54))
And, for Gr < 1700, we have Nu = 1.
For liquids (water, silicone oils and mercury), equation suggested by Globe and Dropkin:
1
Nu = 0.069-Ra 3. pro7t (1.5 x 107 < Ra < 10°..(10.55))

Here also, the space between the plates, ‘b’ is the characteristic dimension. Properties are evaluated at the
average of two plate temperatures.
For Vertical enclosure:
For Air:
For Gr (based on plate spacing ‘b’} < 1700, we have Nu = 1.
Jakob has given following correlations:

1

Crt
%fi = Ny = QE—SGT” @2 % 10° < Gr < 2 x 10°..(10.56))
ol
b
where ky; = effective thermal conductivity
L
k 0.065-Gr4
and, ~tl = Nu = Lacihdh 2 x 10° < Gr < 10..410.57))

(5]
b
Note that for above two relations, aspect ratio, L,/b > 3.

If L/b < 3, each vertical surface is treated independently.
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If the enclosed vertical layer contains fluids with Prandtl numbers between 3 and 30,000, following correla-
tion due to Emery and Chu may be used:

Nu=1 (for Ra < 1000...(10.58)}

1
_ 0.28-Raf

&

Layer thickness ‘b” is the characteristic dimension used in Nu and Ra.
txample 10,13, Air at 2 bar pressure is contained between two horizontal panels separated by a distance of 20 mm. The

lower panel is at a temperature of 70°C and the upper panel is at 30°C. Calculate the heat transfer rate by free convection
per sq. m. of the panel surface.

Solution.
Data:
L:=002m T,:=70°C T,:=30°C g:=981m/s* P:=2x10°Pa R :=287]/kgk
We need properties of air at film temperature T, = (70 + 30}/2
T := 50°C (average temperature)

And, Nu (for 1000 < Ra < 107...(10.59))

Properties of air at 50°C:
Note that only density changes with pressure and g k and C, do not change much; however, v = u/p, and this
changes with pressure.

= — P /m® density of air at 2 bar pressure)
P= R v F (density of 4
ie i p = 2157 kg/m’ (density of air at 2 bar pressure)
H = 19.57 % 107 kg/ms {dynamic viscosity)
Therefore, V= 4
fel
ie v=9.07 x 107® m*/s {(kinematic viscosity at 2 bar pressure}
k = 0.02781 W/(mK) (thermal conductivity).
Pr .= 0.709 (Prandt! number)
1
p= T, +273
e f=3.096x10" 1/K
Then, Gr = M
' ' 2
ie. Gr = 1.181 x 10° (Grashoff number)

Then, using Eq. 10.53, we get:

1
1

Nu := 0.195-Gr (10* < Gr < 3.7 x 10°...(10.53))
ie. Nu = 3.615 (Nusselt number)
Then, heat flux across the gap is computed from:
¢L

Nu=————7+

k(Tl - Tz)
ie q:= nyliTi) ...heat flux across the gap
ie. 4 = 201.07 Wim* heat flux across the gap

Example 10.14.  Air gap between the two glass panels of a double-pane window (0.8 m wide x 1.5 m high) is 2 cms. If the
two glass surfaces are at 20°C and 0°C, determine the rate of heat transfer through the window.
Solution,
Data:
L:=15m W:=08m b:=002m T, = 20°C T, :=0°C g :=9.81 m/s
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We need properties of air at film temperature T, = (20 + 0)/2 .
Tp:=10°C (average temperature)
Properties of air at 10°C:

vi=1419 x 10 m*/s k= 0.02487 W/(mK}  Pr:=0716 f:= L e A=353 %107 1/K
T, +273
Remember that here, the distance between panels ‘b’ is the characteristic dimension.
. v —_ . 3
Then, Gr= £8T T}
%
ie. Gr = 2.754 x 10° (Grashoff number)
And, % =75>3 (condition is satisfied.)
Then, using Eq. 10.56 we get:
1
. 4
Ny = 318G (2 x 10* < Gr < 2 x 10°...(10.56)}
ol
b
ie. Nu = 1435 (Nusselt number)
Therefore, ko = Nu-k
ie k. = 0.036 W/(mK) (effective thermal conductivity)
Then, heat flux across the gap is computed from:
Nuw= 18
k(,-T;)
ie. g = M};E*Tzl (heat flux across the gap)
Defining “effective thermal conductivity’, we can also write the above relation as:
Koyt == Nu -k (effective thermal conductivity)
ie. ke = 0,036 W/{(mK) (effective thermal conductivity)
ky (T, -T,
and, g = % (heat flux across the gap)
ie. 7 = 35.696 W/m’ (heat flux across the gap)
Therefore, Q:=g((L-W)W (heat transfer rate)
ie. Q=42835W (heat transfer rate)

10.5.11 Free Convection In Inclined Spaces

This situation is encountered in flat plate solar collectors and double-glazed windows. Fig. 10.4 shows the no-

menclature for the relations given below. This configuration has been investigated for large aspect ra-

tios (L/& < 12} by Hollands et.al. Following equation correlated
T, /5\/ experimental data at tilt angles 7 less than 70 deg.:

- e L6
14 Nug =1+ 1.4801- 1708 11- 1708 -(sin (1.8- 1)}
Ray -cos(T) Ray -cos(7)

L — 1

Ray - 3
@ | RIosD s | 1060

5830
T If the quantity in the first bracket and the last bracket is nega-
tive, then it must be set equal to zero.

FIGURE 10.4 Free convection in inclined, For tilt angles between 70 deg. and 90 deg. Catton recom-

mends that the Nusselt number for a vertical enclosure (7 = 90
deg.) be multiplied by (sin 2'/*
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ie.

Nuy (7) = Nu(z = 90)-{sin(1)) -(10.61)
Example 10,15. Tn a solar flat plate collector, the plate is of size 1 m x 1 m and is at a temperature of 140°C. The glass
cover plate is at a distance of 8 cm from the collector surface and its temperature is 40°C. Space in between contains air
at 1 atm. If the collector plate is inclined to the horizontal at 20 deg., determine the heat transfer coefficient.
Solution.

Data:
L=10m W:=10m b:=008m | = 140°C T, = 40°C r:= 20 deg (angle of tlt (to horizontal)
But, while using Mathad, arguments for trigonometric functions must be in radians: So,
=20 % {radians...angle of tilt (to horizontal))
g = 981 m/s” {acceleration due to gravity)
We need properties of air at average temperature T, = (140 + 40)/2
T, = 90°C (average temperature)
Properties of air at 90°C:
vi= 21.96 x 107 m?/s {kinematic viscosity)
k = 003059 W/(mK} (thermal conductivity)
Pr:=0.705 (Prandt! number)
1
fi= =
¢ +273

e A=12755 %107 1/K
Remember that here, the height of panels ‘L’ is the characteristic dimension.

And, % =125>12 (condition is satisfied.)
_ RE
Then, Gr, = &0 D
vl
ie. Gr, = 5604 x 10° (Grashoff number)
and, Ray := Gry-Pr (Rayleigh number)
ie. Ra, = 3.951 x 10° {Rayleigh number)

Then, using Eq. (10.60), we get:

Asin(1.8- 7N . 3
Nig =1+ 144 1- 1708 ||, 1708-(sin(1.8-7)) R (RaL cos(‘r)) 1 .(10.60)
Ra, -cos{7) Ra, -cos (1) 5830

1708 :
We have: l-———mm| =1 not negative
€ have [ RaL'cos(r}] ( g )

1

Ra; -cos(71) 3 )
d, —— | —1]| = 85.034 not negative
an s (ot negatice)

Note: If the above two terms are negative, then they must be set equal to zero. ‘

Therefore, Nii, = 87.474 (Nusselt number)
ie. ko= N”TLJ‘ W/ (mPK) theat transfer coefficient)
Le. h = 2.676 WHm'K) (heat transfer coefficient.)
10.5.12 Natural Convection Inside Spherical Cavities
Diameter D is the characteristic dimension. Following relation is recommended:

D-h
—kaf’-g— = C-(Grp-P1)" .(10.62)
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where C and n are taken from table below: ‘

Grarr

104 - 10° 0.59

1/4
10% - 102 0.13 1/3
10.5.13 Natural Convection Inside Concentric T

Cylinders and Spheres
Free convection in enclosures formed between concentric cylinders
and concentric spheres when the gap is filled with various fluids such
as air, water and oils have been correlated by Raithby and Hollands.
See Fig. 10.5. Here, D, and D, are the inside and outside diam-
eters of the long cylinders or spheres; T; and T, are the corresponding
temperatures, L is the length of long cylinders, and ‘b’ is the gap or
thickness of the enclosed fluid layer (i.e. ¥ = [D, - 1;]/2). Procedure is
to find out an effective thermal conductivity and then determine the
heat transfer as if by pure conduction, using this effective thermal
conductivity.

Concentric cylindrical annuli:
Q - Z'K‘keff'(T[‘ - TO)
L

"5)

- 1
4 =
Kett =O.386A(—Pr J Ra

-k 0.861+ Pr

Concentric spherical annuli:

- 1
keff P?’ T
e _ 74| ————| -Rat
k 0.861+ Pr Rag
And,
Ra, = b-Ray 5
Di.pt. 717;*' ﬁl_y
D5 DB
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]

FIGURE 10.5 Free convection in an
enclosure between long, concentric
eylinders and spheres (T; > T}

(100 < Ra, < 107...(10.64))

...(10.65)

(10.66)

(10? < Ra,, < 10*.(10.67))

..(10.68)



In both Egs. 10.65 and 10.68, Rayleigh number (Ray)

is based on the thickness ‘b’ of the anrular fluid layer.

Further, fluid properties are to be evaluated at the average of T. and T,, and Egs. 10.64 and 10.67 are invalid if

(k./ k) found from them is less than unity. If (k.;/k} is less than one,
in the fluid and k. = k should be used.

Example 10.16. A sphere of 0.15 m diameter stores a brine at
0.2 m diameter and the intervening space contains air at 1 bar. The outside
heat transfer rate.

Solution.
Data:

D;:=015m D,=02m b:=0025m T, :=-5°C T, :=25°C

We need properties of air at average temperature Te=(25-5)/2

Tf = 10°C
Propetties of air at 10°C:
ves 1419 % 1078 m?/s k= 0.02487 W/(mK)  Pr:=0716  f:= !
T, +273

Remember that here, the gap between spheres ‘b’ is the characteristic dimension.
BT, -T)-H
GR, = g—*—z——

Then,
Vv
ie. Gr, = 807 x 10t
Therefore, Ray := Gry Pr
ie. Ra, = 5.778 x 10*
Now,
L
4 1
ket _ 074 2" Ral
k 0.861+ Pr
b-R
where Ra, = i <
DD —L, + L,,,
D;  D§
ie. Ra,, = 235.649
Therefore, from Eq. 10.67 we get:
Kert =238
ie. ko = 2.38-k
ie keff = 0.059 W/(l’]‘.‘lK}
Therefore, rate of heat loss:
D:' 'Du
Q:= zr~keff-[ ).(T,- -T)
ie. 0 = 6694 W.

Note: Negative sign indicates that heat flow is from outside to inside.
Exomple 10.17. A long tube of 0.1 m OD is maintained at 150°C. It is surrounded

then the process is one of pure conduction -

—5°C and is insulated by enclosing it in another sphere of
sphere is at 25°C. Estimate the convection

g=98 m/s?

(average temperature)

ie B=3534 %107 1/K

(Grashoff number)

{Rayleigh number)

(10 < Ra,, < 10°...(10.67))

(10.68)

(effective thermal condictivity)

{10.66)

by a cylindrical radiation shield,

located concentrically, such that the air gap between the two cylinders is 10 mm. The shield is at a temperature of 30°C.

Estimate the convection heat transfer rate per metre length.

Solution.
Data:
D;:=01m D,=012m =001m T;=150°C  T,:=30°C
We need properties of air at average temperature Ty = (150 + 30)/2
Ty = 90°C

Properties of air at 90°C:
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vi=2196 x 10° m?/s  k:= 0.03059 W/(mK) Pr:= 0705 .=

1
T, +273

ie f=2755 x 107 1/K

Remember that here, the gap between cylinders ‘K is the characteristic dimension.

BT - T8
Then, Gr, = M'_ﬂ_
: 7
ie. Gr, = 6,725 x 10°
Therefore, Ray, == Gry-Pr
ie Ra, = 4741 x 10°
Now,
1
> 1 1
ki _g3ge | Pr -Ra
k 0.861+ Pr
where,
D 9
[m[ D Ra
RaCL' ' , 5
1 1
b’:5 " _3 + "“3
Df D§
ie. Ra, = 213.597
Using this value of Ra . in Eq. 10.64 we get:
keﬁ
== =1.209
k
ie. ko = 1.209-k
ie. ko = 0.037 W/(mK)

Therefore, rate of heat loss per meter length:

Q_ 27ky (T-T)
CoE)
Inf ==
D,
2

ie I = 152943 W/m.

(Grashoff number)

(Rayleigh number)

(100 < Ra, < 107...(10.64))

..(10.65)

(effective thermal conductivity)

{10.63)

10.5.14 Natural Convection In Turbine Rotors, Rotating Cylinders, Disks and Spheres

Thermal analysis of shafting, flywheels, turbine blades, and other machine elements is

and this involves natural convection heat transfer from a rotating body
Cooling of turbine blades:

of practical importance,

to surrounding ambient.

Blade is cooled by drilling a blind hole from the root till near the tip of the blade and the coolant circulates

through this hole by centrifugal acceleration 7,,.@* where r,, is the mean radius of
centre and & is the angular velocity of the blade.

the blade measured from shaft

$0, now, in Grashoff number, acceleration due to gravity term is replaced by centrifugal acceleration. There-

fore,

Gy (@) BAT-L
T
where L is the length of cooling passage.
In practice, Gr is always > 10"
turbulent flow:
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0.4
h.-L 117
Nu. = 222 _ 0.0246- _ProGn
’ k 2
1+ 0.495.Pr3

.(10.69)

Once average heat transfer coefficient is calculated, if d and L are the diameter and length of the hole respec-
tively, total heat transferred is calculated by applying the Newton’s law of cooling:
Q=hy{mdL}-(T,-T,) -(10.70}
where T, is the surface temperature of the hole and T, is the coolant temperature.
Rotating cylinders:
Here, we define a peripheral-speed Reynolds number:
2
Re, = FL @ .{10.71)
Vv
At speeds greater than critical, (Re,, > 8000 in air), following correlation is used for average Nusselt number
in natural convection from a rotating, horizontal cylinder, in air:

h-D

Nugp, = = 0.11-(0.5-Re,? + Grp-Pr)"® -{10.72)

Rotating disk:
At rotational Reynolds number @.D*v below about 10°, boundary layer on the disk is laminar.
For laminar regime, average Nu for a disk rotating in air:

1
: D22
Nup = h“kD = 0.36.[6'} D ] {for o D%/ v < 108..(10.73))
v
For turbulent regime, local value of Nu at a radius r is given approximately by:
hL. 2 0.8
-t -
Nu, = =7 = 0.0195-[ 4 ] (10.74)
v

If there is laminar flow between r = 0 and r = r,, and turbulent flow between r = r. and r = r;, average value

of Nusselt number is given by:
1
. 22 2 L2 0.8 2.6
Nu, = % - 0.36-[“’ %o ] {’J + 0.015-("" 2 } : 1—[1“] (for r, < 1,..{10.75))
v 7, v A

Rotating sphere:
For Pr > 0.7, in laminar flow regime, (i.e. Re, = @.0%/v < 5 x 10%, average Nusselt number is given by:
Nup = 0.43-Re 5 pr®t (Re, < 5 x 10%..(10.76))

And,
Nup, = 0.066-Re - Pr®4 (5 % 10* < Re,, < 7 x 10°...(10.77))
Example 10.18. A turbine blade is cooled by free convection with water as coolant. The cooling passage is 8 mm in
diameter and 8 cm long. The blade velocity at a mean radius of 25 cm is 240 m/s. The hole surface temperature is at
230°C and cooling water temperature is 50°C. Find the average heat transfer coefficient and the rate of heat loss.
Solution.
Data:
I} :=0.008 m L:=008m Iy =025 m V=240 m/s T, := 230°C T, :=50°C g =981 m/s’
We need properties of water at average temperature T; = (230 + 50)/2
T;:= 140°C ...average temperature
Properties of water at 140°C:
vi= 02118 x 1076 m?/s k= 06845 W/(mK) Pr:=123  F:=0966 x 10 1/K
Here, the length of hole ‘L’ is the characteristic dimension.
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Then,
(r,-@*)B-AT-I1}

Gry = 7 (Grashoff number)
In the above, (7, @) is the centrifugal acceleration of water at the mean radius, Y
Now, V=r, w
: |4
ie. Q= —
rﬂ!
V2
And, T @ = = 2304 x 10° m/s? {centrifugal acceleration of water.)
P
Then, we get
5y. 8. - 33
Gry = (2-304  10°) ’f(T’ L)L (Grashoff number)
v
ie. Gr, = 4572 x 10" (Grashoff number)
Heat transfer coefficient
We use:
0.4
h. pri7
Nu, = ”kL =006 | TG ..{10.69)
1+0.495-Pr3
ie. Nu, = 1.655 x 10*
, ‘ Nu, -k . ,
ie. h, = — W/{mK) (heat transfer coefficient)
e h, = 1.416 x 10° W/(m’K) (heat transfer coefficient)
Heat transfer:
Q:=h, (#DL)(T,-T) (10.70)
ie. Q=5125x 10w

Example 10.19. A 15 cm diameter steel shaft whose surface is at 120°C is allowed to cool while rotating about its own
horizental axis at 3 r.p.m. in an environment of air at 20°C. Find the initial rate of heat loss.
Solution.
Data:
D:=015m L:=1m N:=3rpm T, :=120°C T,:=2°C  g:=9.81 m/s
We need properties of air of average temperature Ty = (120 + 20)/2

Tf := 70°C (average temperature)
Properties of air at 70°C:
pi=199 %10 m?/s  k:= 00292 W/(mK} Pr:=0707 F:= 1 1/K ie. f=2915x 107 1/K
T, +273
Now, rotation speed of the shaft is:
W= 27N rad/s
ie. @= 0.314 rad/s
Here, we have the peripheral—speed Reynolds number
Re, = TP .(10.71)
v
ie. Re, = 1.116 x 10°
And,
BT, -T,)-D°
Grp = gﬁ(—svzilm— : (Grashoff number)
Le. Grp = 2.437 x 107 (Grashoff number)
and, Ra = Grp-Pr (Rayleigh number)
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Le. Ra = 1.723 x 107 {Rayleigh number)
Then, from Eq. 10.72:

Nug = }?‘-1;9 = 0.11.(t5 Re 2 + Grpy-PrP™ -{10.72)
ie. Nup = 37.796 (Nusselt number)
And, h, = NuDD'k W/ (mK) (heat transfer coefficient)
ie h, = 7363 W/ (m’K) (heat transfer coefficient)

Initial rate of heat loss:
Q=hAxD-L)(T,-T)W/m

ie. Q= 346957 W/m.
Example 10.20. A 20 cm diameter disk, being ground at 3000 r.p.m. has its surface at 70°C. Surrounding air is at 30°C.
Find the value of convection coefficient
Solution.
Data:

D:=02m N:=3000rpm T, == 70°C T,=30°C g:=981 m/s*

We need properties of air at average temperature Tf = (70 + 30)/2

Ty = 50°C (average temperature)
Properties of air at 50°C:
vi=1792x10°% m?/s  k:= 002781 W/(mK)  Pr:=0709  jg:= 7 +1273 /K ie f=3006x 107 1/K

f
Now, rotational speed:
2.m-N
W=
60
ie. w= 314.159 rad/s
@ D? 5 .. 6 .

Therefore, =7.012 x 10 (this is less than 10°..therefore, laminar.)

v

Then, applying Eq. 10.73 we get:

Nip = h",;D = 0.36-{"’"? i Jz (for @.D*/v < 10°..(10.73))

ie. Nup = 301.466 (Nusselt number)
And, h, = Nug-k W/(m?K) (heat transfer coefficient)

ie. k, = 41.919 WHmM’K) (heat transfer coefficient)

Exomple 10.21. A sphere, 0.1 m in diameter is rotating at 30 r.p.m. in a large container of Carbon dioxide at atmospheric
pressure. The sphere is at 180°C and the CO, is at 20°C. Estimate the rate of heat transfer.
Solution.
Data:

D=01m N:=30rpm T,:=180°C T,:=20°C  g:=981 m/s

We need properties of CO, at average temperature T; = (180 + 20)/2
Ty = 100°C {(average temperature)
Properties of CO, at 100°C: :

vi=126 x 10 m/s  k=00279 W/(mK) Pr:=0733 f:= = L 1/k ie. f=2681 x100* 1/K

¢ +273

Now, rotational speed:

_2xN
60
ie. w= 3142 rad/s
.D?
And, Re, = wv
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ie Re,, = 2.493 % 10° (this is less than 5 x 10"...therq‘ore, laminar.)
Then, average Nusselt number is given by:

) Nup, = 0.43-Re 25.pr04 (Re,, < 5 x 10%..(10.76))

ie. Nup = 18.963 - (Nusselt number)
Then, Ho= NuDD * W/ (m?K) (heat transfer coefficient)

ie. B = 4322 W/(m'’K) (heat transfer coefficient)

Heat transfer rate:
Q=h(xD)(T,-T) W
ie. Q=21.723 W.

10.5.15 Natural Convection from Finned Surfaces

‘Heat sinks’ used in cooling of electronic devices have fins on their surfaces. Heat is transferred to the heat sink
from the electronic device by conduction and then the heat is dissipated to the ambient from the fins, mostly by
natural convection. Advantage of natural convection cooling is that there is no need to have an external moving
part (like a fan or pump) and therefore, there is increased reliability. Of course, there is a limitation to the amount
of heat that can be transferred, and if the heat to be dissipated is quite large, forced convection cooling may have
to be resorted to.

Fins increase the surface area for heat transfer. If the fins are very close to each other, we will have more
area, but the heat transfer coefficient will be low since too close a spacing of the fins impedes the flow of fluid by
convection. Instead, if the fins are far apart, toial surface area will be less, but heat transfer coefficient will be
larger. Therefore, there is an optimum spacing for the fins, which maximizes the heat transfer by natural convec-
tion from a given base area of width W and height L.

Rectangular fins on a vertical surface:
See Fig. 10.6. .
For a vertical heat sink with isothermal fins of thick-
ness “t' much smaller than the fin spacing *5’, Bar-Cohen
Quiescent air, T, and Rohsenow give the optimum fin spacing as:
L
Sope = 2714 — ..{10.78)
Ra4
where L is the fin length in vertical direction and it is the
characteristic dimension to calculate Ra.

Then, heat transfer coefficient for this case of optimum

spacing is given by: '
k

h =131

{10.79)
opt

and the rate of heat transfer by natural convection from the

fins is determined from;

FIGURE 10.6 Free convection from vertical heat
Q=h-QnLH(T,-T) ...(10.80)

sink with fins

where n = W/(S + 1) = number of fins and T, is the surface temperature of fins.
Rectangular fins on a horizontal surface:
See Fig. 10.7.
For rectangular fins on horizontal surfaces, fins facing upwards for T, > T, {or facing downward for T, < T,),
Jones and Smith give following correlation:

2 2
] +(0.081-Ra¥¥%)y2 (10.81)

1500
g

Above equation is valid over the range:
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200 < Ra, < 6 x 10°, Pr = 0.71, 0.026 < H/W < 0.19, and
0.016 < 5/W < 0.20, with the following definitions:
q-5

3
u= —25  and, Re,= 3P T -T)S
(T, -T, )k v
Exomple 10.22. A vertical heat sink, 0.3 m wide x 0.15 m high,
is provided with vertical, rectangular fins of 1 mm thickness.
Base and surface temperature of fins is 100°C and the sur-
rounding air is at 20°C. Determine the optimum fin spacing
and the rate of heat transfer from the heat sink by natural con-
vection.

Solution,
Data:
W:=03m =015m H:=002m

S jt—
Quiescent air, T,
t]e—

H !

FIGURE 10.7 Rectangular fins on o horizontal
surface

£=0001m  T,:=100°C T,:=20°C g:=981 m/s
We need properties of air at average temperature T, = (100 + 20)/2

Ty:= 60°C

W=03m

T,=100°C

(average temperature)

\H=20 mm
N

Quiescent air, T,= 20°C

L=015m

FIGURE Example 10.22 Free convection from vertical heat sink with fins

Properties of air at 60°C:

= 1897 x 108 m¥/s  k:= 0.028% W/(mK)  Pr=0696 f:= T—:z?é 1/K ie. f=3.003 x 107 1/K
f
Now, the characteristic length is the length of fins in vertical direction, ie. L = 0.15 m.
Then,
LA, _ F3
Gry = ig——é-g’—z—m-l‘— (Grashoff number)
v

ie. Gr, = 221 x 107 (Grashoff number)
And, Ra = Grp-Pr
ie. Ra = 1.538 x 107 (Rayleigh number)

Optimum fin spacing:
We use Eq. 10.78:

Sopt 1= 2714 —
7
ie, Sopt = 6:5% 107 m
i.e. Sopt = 6.5 mm

.{10.78)
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No. of fins:

n:= d (no. of fins)
SDpl +t

ie. n = 39.998 ’ {say 40
ie, n:= 40 (no. of fins)
Heat transfer coefficient:
From Eq. 10.7%

h = 1.31-L ..(10.79)

Sopt

ie. h = 5.836 W/(m?K) (heat transfer coefficient)
Heat fransfer rate:
From Eq. 10.80:

Qu=h@2nLHT-T) ..(10.80)
ie. Q =112.056 W,

10.6 Comprehensive Correlations from Russian Literature

Following correlations are from the text book by M. Mikheyev.

Free convection from different objects:

Free convection from different objects were investigated with various fluids such as air, hydrogen, carbon diox-
ide, water, aniline, glycerine, carbon tetrachloride, various oils etc. Objects studied included horizontal and ver-
tical wires, tubes, plates, and spheres of widely different sizes: wires and tubes from 0.015 to 245 mm in diameter,
spheres from 30 mm to 16 m in diameter, height of plates and tubes ranging from 0.25 to 6 m. Gas pressures were
varied from (.03 to 70 ata.

While generalizing the data, reference dimension was diameter d for tubes and spheres, and height h for
plates. Properties of fluids were taken at film temperature, T; = (T, + T,)/2. It is interesting to note that all the
data, when plotted with log(Gr.Pr}) on the x-axis and log (Nu) on the y-axis, fall fairly well on one common curve.
So, the general relation is:

Nu; = C(Gr- Pry" ..(10.82)

Values of C and # for different ranges of (Gr-Pr) are taken from foellowing Table:

s {ﬂrﬁ’r}, ﬂ .
1x107° -5 x 10° 1/8
5x10% -2 x 107 1/4

2 x107 -1 x 10" 1/3

Note that with Ra = (Gr- Pr) <1, Nu = 0.5 and remains constant, i.e. h = 0.5.k/d = heat transfer coefficient for
very low Rayleigh numbers. (e.g. for very thin wires).

Principal conclusions were: (a) Rayleigh number is the main dimensionless term to determine heat transfer
in fee convection (b) Shape of the body is of secondary importance in the process considered.

Eq. 10.82 is applicable to any fluid with Pr > 0.7 and for bodies of any shape and size. Same formula may be
used to calculate heat transfer from horizontal plates too. Then reference dimension is the smaller side of the
plate. Value of k determined from Eq. 10.82 must be increased by 30 % if the het surface is facing upwards, and
decreased by 30 % if the heat losing surface faces downward.

For horizontal tubes, especiailly, following correlation is recommended for free convection with liquids and
gases:

1
Z
Nu, = 0.51-(Gr-Pr)%-[£iJ .(10.83)

Tw

Here, note that fluid properties are determined at free stream temperature T, and the reference dimension is
the tube diameter, d.
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For air, Eq. 10.83 is given in the following simplified form:

Nu, = 047-Grt -{10.84)
Note that for horizontal tubes, Eq. 10.83 is to be preferred to Eq. 10.82.

Free convection in different enclosures:
Here, the concept of ‘equivalent thermal conductivity’ is used. It has the advantage that the heat transfer coeffi-
cient & need not be determined. In the following correlations, thickness of the enclosure & and the mean fluid
temperature (= [T, + T,]/2), are taken as the reference dimension and reference temperature respectively, irre-
spective of the shape of the enclosure. Passages considered are: horizontal passages, vertical passages, enclosures
within concentric cylinders and concentric spheres. Again, it is found that for all these enclosures, data fall well
within a single curve. Following are the correlations:

K

ETH =1 (for Ra < 1000...(10.85))

% = 0.105- Ra®? {for 10* < Ra < 10°...(10.86))
and,

fiii = 04-R4%2 {for 10° < Ra < 10'°...(10.87))

In approximate calculations, Eqs. 10.86 and 10.87 may be replaced by the following single eqn. for the entire
range of Ra > 1000

kaf - 0.18 R (for Ra > 1000...(10.88))

If kyi/k works out to be less than one, it means that Ra < 1000, and we should take k. = k.
Example 10,23, Work out Example 10.11 with formula from Russian literature: A sphere of 25 mm diameter, with its
surface temperature at 100°C, is kept in still air at a temperature of 20°C. Determine the rate of convective heat loss.
Solution.
Data:

D:=25x10"m T,:=100°C T,:=20°C g :=9.81 m/¢

Properties of air at film temperature of (100 + 20}/2 = 60°C are:

1
— 2ne - -6 2 — — —
Ty = 60°C vi= 1897 x 107" m*/s k = 0.02896 W/(mK) Pr:= (.696 A= T,+273 1/K
ie. B=3003x10°%1/K
Diameter D is the characteristic dimension to caiculate Ra.
A= D m? (surface area of sphere)
ie. A = 1.963 x 1073 m? (surface areq)
3 . . . P
And, G DEBILT)
v
ie. G, = 1.023 x 10° (Grashoff number)
and, Ra := Gr-Pr
ie. Ra = 7.122 x 10* {Rayleigh number)
Now, use Eq. 10.82:
Nug = C-(Gr-Pr)" (10.82)
From the Table, for Ra = 7.122 x 10%, we get:
C=054 and, n-= %
Therefore, Nug = C-Ra" (Nusselt number)
i.e : Nu; = 8.822 (Nusselt number)
Nu; k 5 , .
And, h = W/{mK}) (heat transfer coefficient)
ie. h = 10.219 W/{m*K) (heat transfer coefficient)
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Compare this value of # with & = 10.454 W/(m’K) obtained earlier.
Therefore, rate of heat loss from sphere:
Q:=hA(T,-T)W

ie. Q= 1.605 W.

Compare this value of Q with J = 1.642 W, obtained earlier.
Exomple 10.24. Work out Example 10.16 with formula from Russian literature: A sphere of 0.15 m diameter stores a
brine at -5°C and is insulated by enclosing it in another sphere of 0.2 m diameter and the intervening space contains air
at 1 bar. The outside sphere is at 25°C. Estimate the convection heat transfer rate. '
Solution.
Data:

D;:=015m D,=02m b:=0025m T;=-5°C T,=25°C  g:=981 m/s

We need properties of air at average temperature T, = (25 - 5)/2

T;=10°C ...average temperature
Properties of air at 1(°C:
vi=1419x 10 m?/s  k:= 002487 W/(mK}  Pr:=0716 f:= 1 e fA=3534x10? 1/K
T, +273
Remember that here, the gap between spheres ‘b is the characteristic dimension.
3 [ R
Then, Gr,:= LAACFIb ’B(T"z LR
v
ie. Gr, = 8.07 % 10* (Grashoff number}
Therefore, Ra, = Gr,- Pr
ie. Ra, = 5.778 x 10* {Rayleigh number)
For this value of Ra, appropriate equation is Eq. 10.86 viz.
kTﬂ* = 0.105-Ra >* {for 10° < Ra, < 10°..(10.86))
ie. ke _ 2.817
k
ie. ko= 2817k .
ie. ki = 0.07 W/(mK) (effective thermal conductivity)
Compare this value with k = 0.059 W/(mK), obtained earlier.
Therefore, rate of heat loss:
D:’ 'Du
Q= 7k (TJ-(TE -T,) -(10.66}
ie. Q=-7923W

Note: Negative sign indicates that heat flow is from outside to inside.
Compare this value of Q with () = -6.694 W, obtained earlier.

10.7 Combined Natural and Forced Convection

In many practical situations, natural and forced convection may occur together. At high velocities forced convec-
tion may be predominant, but at low velocities effect of natural convection alse must be included. Further, natu-
ral and forced convection may occur in the same direction or they may act in opposite directions. We have the
following criteria to determine if the combined free and forced convection is to be considered.

Gr,/(Re?) << 0.1 {forced convection regime (negligible free convection)
Gr,/(Re;?) »>> 10 {free convection regime (negligible forced convection)
0.1 < Gry/(Re,”) = 10 {mixed convection regime (both free and forced convection are important)

In the mixed convection regime, following equation is used to calculate the Nusselt number:
Nu™ = Nugeod™ + Nugee” (10.89)

where first and second terms on RHS are Nusselt numbes for forced and free convection respectively. A value of
m = 3 is generally recommended. Positive or negative sign is taken if the free convection flow occurs in the same
or opposite direction to that of forced convection.

For the specific case of mixed convection for internal flow through a horizontal pipe, we have the follow-
ing correlations for average Nusselt number:
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For laminar flow (Rey, < 2000): {correlation due to Brom and Gauwin)

0.14 47
Hy Ik
Nup, = 1.75-(—) -[Gz + 0.012~[Gz-Gr5) ] ...{10.90)

Hy

where g, and g, are viscosities of the fluid at the bulk mean temperature and surface temperature respectively,
and Gz is the Graetz number, given by:

Gz = ReD-Pr-(%] = Graetz number. ..(10.91)
For turbulent flow : (correlation due to Metais and Eckert):
D 0.36
Nup, = 469-Re 3% P22 Gr 57 [f) -{10.92)

Example 10.25.  An un-insulated pipe of 50 mm OD, with a surface temperature of 50°C, runs through a plant reom. An
exhaust fan creates a mild flow of air upwards across the pipe, with a velocity of 0.2 m/s. If the ambient temperature is
30°C, calculate the rate of heat loss by combined free and forced convection.
Solution.
Data:

D:i=005m L:i=1m V:i=02m/s T,:=50°C T,=30°C g:=981m/s°

We need properties of air at average temperature T, = (50 + 30}/2

Ty = 40°C (average temperature)
Properties of air at 40°C:
vi= 1696 x 108 m?/s k= 00271 W/(mK) Pr:=071 jg:= 1 e B=3195x107 1/K
T, +273
Remember that here, the diameter of pipe, [, is the characteristic dimension.
- . -_ . E
Then, Gryiw ST T D
ie. Grp = 2.724 x 10° {Grashoff miember)
Therefore, Rap = Grp-Pr
ie. Rap = 1.934 x 10° (Rayleigh number)
Now, Reynolds number is given by:
Re := —D‘V
v
ie. Re = 589.623 (Reynold number)
Therefore,
Gr'; =(0.784 (this value is nearly equal to one. Therefore, flow is in mixed convection

regitme. i.e. both free and forced convection must be considered.)

Free conveclion Nusselt number:
From Eq. 10.43:

Rag

[1 . (0.559 ] ]
Pr

ie Nug,, = 9.261 (Free convection Nusselt number)

Forced convection Nusselt number:
Using Churchill and Burnstein correlation:

Nitge = | 0.60 +0.387- (1075 < Rap, < 10'2..(10.43))
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ES

BD 0.62-Re? . prd Re V[
Nu_, = =03+ 0 .1+( ¢ ) .(9.90)

28200

for 100 < Re < 107 and Re-Pr > 0.2
From Eq. 9.90 we get:
Nbjoreeq = 12927 (Forced convection Nusselt number)
We use Eq. 10.89 to determine the Nusselt number for mixed convection. Also, we use the '+’ sign, since both the
free convection from hot pipe and forced convection with air flowing from bottom of pipe upwards, are additive. We use
the value of exponent as 3.

ie. Nittpied” = Nt + Nttgored” ..{10.89)
ie. Nttpiea® = 794.293 + 2160 = 2954
Therefore, Nu ;g = 14.348 (mixed Nussell number)
Therefore, combined heat transfer coefficient: '
b oo Ntmiea K
D
ie. b = 7.777 W /{m’K) (combined heat transfer cogfficient)

Heat loss per meter length of pipe:
Q=h(r-D-L) (T,- T,) W/m
ie. Q= 19.545 W/m.
Example 10.26 Air at 1 atm. and 20°C is forced through a 15 mm diameter tube at an average velocity of 20 cm/s. Tube
wall is maintained at a temperature of 100°C. The tube is 1 m long. Calculate the rate of heat transfer.
Solution.
Data:
D:=0015m L:=10m V:=02m/s T,:=1000C  T,:=20°C  g:=981 m/s
Properties of air at bulk mean temperature of 20°C:
1
T, +273
ie. A=3413x 1072 1/K g =21.87 x 107 kg/(ms) (dynamic viscosity of air at surface temperature of 100°C.)

Reynolds number:

vi=1506 x 107° m?/s 4 := 1814 x 107 kg/(ms) k= 0.02593 W/(mK)  Pr:=0703 f:=

Rep, = yb (Reynolds number)
v
ie Rep = 199.203 (Reynolds number)
Grasheff number:
. - —_ . 3
Grp = _g_ﬂLT;;z_&)__Q_ (Grashoff number)
ie. Grp, = 3986 x 10* (Grashoff number)
Therefore,
% _ 1004
Rep,

Therefore, this is a case of mixed convection i.e. both free and forced convection are to be considered. And, Eq.
10.90 for average Nusselt number is applicable. i.e.

\E).l-t oY
Nup = 1.75 [& | -[Gz+0-012-(Gz-Gr3)’] ..(10.90)
#S }‘
Now, Graetz number is;
) .
Gz = Rep,- Pr i;_ : " (Graetz number)
ie. Gz = 2,101 - (Graetz number)
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Therefore,

0.4 L
Nity, = 1.75 {ﬂ] -[Gz +0.012-(Gz -GrDT)T}
ﬂi

ie. Nitjy = 3.041 ..Average Nusselt number
k .,

Then, b= N W/ (m°K) heat transfer coefficient

Le. b = 5.258 W /(m’K} ..heat transfer coefficient

Heat transfer rate/m length:

Q=h-(rD-Ly(T,-T) W/m

ie. (0 = 19.821 Wim.

10.7 Summary of Basic Equations for Natural Convection

Important correlations are summarized below:

Geometry .

Carrefation

Heated, vertical plate: Integral method:

Temperature distribution:
IT-T _ [1 B 1}2

Ts - Ts - é
Velocity distribution:
u_y .(1 _ _J:]Q

u, 8 )
Maximum vetocity:

Upas = 4 -uat y = 4/3.

27
Mean velocity:
1 27
Uy = E‘Utz E'umax

Velocity function:

0.5
Uy =517 v-(Pr+ 0.952)-0-5.{#3‘9‘(5 - Ta’] x5
Boundary layer thickness:

)0 25

5 393-(0.952+Pr
X Gl PoT

Total mass flow through the boundary:

GrL i|025

s = VT

Average Nusselt number for laminar flow:
4 _ 0.0887-Pr0%.Gr0 "

Nu. = 2 Ny, = ——220 08 5
Y = 3 T o 0g0 1 BreE

Average Nusselt number for turbulent flow:

. 147, 0.4
Nugyg = fag k. _ 0.0246 M—T ..for wrbutent flow.
k 1+0.485-Pr*

Contd.
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Empirical relations:

Vertical plate, T, = constant

For air and other gases

Height L is the characteristic length.
1
Nu=059-Ra® ..10" < Ra<10°

1
Nu=013-Aa® ..10° < Ra < 107

For all Prand! numbers:b 0< Pr < e

0.6 < Pr«< oo
(For high Prandti No. fiuids)

0 < Pr < 0.6: (Entire range of Ra)
(For low Prandtl No. fluids i.e. liquid metais)

1
0.670-Ra“
- 3

s

( 0.492}% ’
1+] =

Nu= 068 + ..0 < Ra < 10°

Pr

1
0.15-Ra®
Nu= —2B5F8 a0

=
[0.492Jﬁ Z
1+ -

Pr

1

0.387-Aa®

g
(0.492 )Ts'
1+ —=—
Pr

Nu = |0.825 + ..Aa>10°%

Inclined plate,
inclined at an angle & to the vertical
T, = constant

Inclined height L is the characteristic length.
Use vertical plate equations as a first approximation.
Replace g by g-cos (&).

Vertical cylinder

Height L is the characteristic length.
Vertical cylinder can be treated as vertical plate, if the following
relation is satisfied:

D 34

-2

Ra*

Vertical plate, g, = constant

Egs. 10.25 and 10.26 are still valid, with the modification that
constant 0.482 is changed to 0.437.

Alternatively:

A modified Grashoff number is defined:

6r = Gr.tu, = L2
v

And following two relations for local Nusselt no.:
Nu, = 0.60 (Gr'- Pr®2  _16° < Gr’, < 10"
Nux = 0.17 (Gr’- PR°% __Gr, > 10"

For Average Nu:

h= %-hL -..for laminar

Contd.
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h=h, ..for turbulent.

Horizontal plate, T,= constant Characteristic Length: L, = A/P
Upper surface of hot plate {or lower surface of cold plate):

1
Nu = 054-Ra* ..10° < Ra <10’

1
Nu=0.15-Ra® ..107 < Ra < 10"
Lower surface of hol plate (or upper surface of cold plate):

1
Nu=027-Ra* ..10° < Ra < 10"

Horizontal plate, q,= constant Characteristic Length: £, = A/P

All property values, except £, are evaluated at a temperature,
T, defined by:

To=Ts—025(T,-T)

and, fis evaluated at 7,.

Upper surface of hot plate (or lower surface of cold plate}).

1
Nu=0.13-Ra® ..Ra<2x10°
1
Nu=0.16-Ra® .2 x 10% < Ra < 10"

For heated surface facing downward:
Nu=1058 Ra®2 ..10° < Ra < 10"

Horlizontal cylinder, T= constant Diameter D is the characteristic length.
For air:

Nu=C-Ra

C and n from Table 10.2.

For (0 < Pr< ee):

r 1

@]

Nu = |0.60+0.387- Ra 1075 < Aa < 107
s T
(0.559)16
1+ ———
Pr

L ) -

And, only for laminar range:

1

\Ra?
Nu =036 + —2218 A2 10 < Ra< 10°
3]s
{0.559}16
14 222
Pr
1
For thin wires: (D = 0.2 to 1 mm) Nup = 1.18-(Ray)® ...Aa < 500
1
From horizontal cylinders to liquid metals: Nup = 0.53- (Grp-Pr?)?

Contid.
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Spheres: Diameter D is the characteristic length.

1
Nu=2+043-(Ra)* .1 <Ra<105 Pr=1"
And, for higher range of Ra:

1

Nu=2 + 050 -(Ra)* ..3x10°<Ra<8x10°

Rectangular blocks: Ch. Lengh:
S
L +L,
Nu, = 0.55~(Rat)% . 10% < Aa, < 167
Short cylinders (D = H) Nu = 0.775(Ra)*%
Simplified equation for air: Refer to Table 10.3
Free convection in enclosed spaces: Space between the plates, ‘b’ is the characteristic dimension.

o= SL0 T,)b°

_For Horizontal enclosure:

1
For air: Nu=0.195-Gr* ..10° < Gr< 37 x10°

and,

1
and, Nu=0.068-Gr® ..37x10°<Gr<10’

And, for Gr < 1700, we have Nu = 1.

1
For liquids (water, silicone oils and mercury): | Nu = 0.069-Aa® Pr®"" 1.5 x 10° < Ra < 10°
For Vertical enclosure:
For Air: For Gr (based on plate spacing ‘b') < 1700, we have Nu=1.

E“’—f'—=Nu=

1
018-Gr+*
P i

(&)

where k = effective thermal conductivity.
and,

L2x10% < Gre 2 x 10°

s

1
Ka _ pgy = 0:085:Gr*

1
W
b
Note that for above two relations, aspect ratio, L/b > 3.

If £/b < 3, each verical surface is treated independently.

Nu=1 ..for Ra <1000
and,

L2 x10° < Gr< 107

1

_ 0.28-Ra*
ik

)
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7
inside vertical enclosure: -.for 1000 < Ra < 10
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Free convection in inclined spaces:

{Fat plate solar collectors and double
glazed windows)

For {L/6 < 12) and at filt angles rless than 70 deq.:

Nu =1+144 (1—

Ra, -cos (1) Ra, -cos (1)

a3
R (ReL-cos(r)}a i
5830

1708 M 1. 1708-(sin (18-7))'®

If the quantity in the first bracket and the last bracket is negative,

then it must be set equal to zero.

For tilt angies between 70 deg. and 90 deg. Catton recommends
that the Nusseit number for a vertical enclosure (7= 90 deg.) be

multiplied by {sin 7}", ie.

1
Nu, (1) = Nu{t = 90)-(sin (r))*

Natural convection inside
spherical cavities:

—D':““g = C{Gry P)"

For values of C and n, see table in text.

Concentric cylindrical annuli:

‘Y is the gap or thickness of the enclosed fluid layer
(he. b=[D, - D)2).

Q _ 2rxka(-T)

P

Keon. = 0386 | ——
K 0.861+ Pr

F
Pr }-Hagc 100 < Ra,, < 107,

Concentric spherical annuli:

1
rE '
LET 0.74-[LJ ‘Rad .07 < Ra, < 10°

k 0.861+Pr
and,
‘R
Ra,, - b-Ra, _
1 1
DiD!| Ty
D¢ D¢
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Cooling of turbine blades:
(hole diameter D, hele
length, L)

- @2) BA T LR
GrL=(r m)]fziA

Mostly, Gr, > 10'%, and we use:

2.4

. 17
Nu, = thL -0.0246 G _

z
1+0.495.Pr3

Total heat transferred:
Q=ho(md L) (T,—-T,)

Rotating cylinders:

Peripheral-speed Reynolds numbsr:

.DR.
fe =.'1'D @

i

vV
For {Re, > BOOO in air): Average Nusselt number;

Nuy, = % = 0.11 (05-Re? + Gr,-Pr)

Rotating disk:

For laminar regime, average Nu for a disk rotating in air:

.
. D2\ D?
Nup, = h“kD =o.36-[ﬂ] or LB7 6
v 4

For laminar flow between r = 0 and r = r_, and turbulent flow between
r=r,and r = ry, average value of Nusselt number is given by:

1
] 2 E 2 2 08 2.6
Nu, = h‘k'" = 0.36 (‘”Vr"] {Eﬂ] +o.o15-[“’—}':°) : 1-(1‘:—“J
o ]

Wforr, <,

For turbulent regime, local value of Nu at a radius r is given by:

[eX:}

h.- 2

Nu, = ;" =0.o195{“”}
Vv

Rotating sphere:

For Pr> 0.7, in laminar flow regime, {i.e. Re, = @.D*v < 5 x 10,
average Nusselt number is given by:

Nup = 0.43Re % Pr®* | Re, <5 x 10°
and,
Nup, = 0.066 Re 8. Pr®% 5 x 10* < Re, < 7 x 10°

Rectangular fins on a vertical surface:

See Fig. 10.6.

h=131.

Optimum fin spacing:

Sopt = 2.714«111— where L = fin length in vertical direction and is also
Ra® the characteristic length.

K

opt
Rate of heat transfer:
Q=h-(2-n-L-H) (T,— T,) where n = no. of fins

Contd.
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Rectanguiar fins on a
horizontal surface: For fins facing upwards for T_> T, (or facing downward for T, < 7).
See Fig. 10.7

-1

2 7
Nu, = [[1::0J +(0.081Ra 539)*2]

5

Above equation is valid over the range:
200 < Aay, < B x 10°, Pr=0.71, 0.026 < H/W < 0.19, and 0.016 < S/W
< .20, with the following definitions:

g8
Ny = ———
ST Tk
and,
A _ o3
Ra, = g0 - Ta) S
v-a
Eﬂdﬁnﬁﬂgrm Gr/(Re?) << 0.1 ...forced convection regime (negligible free convection)

Gr/(Re”) >> 10 ...free convection regime (negligible forced convection)

0.1 < Gr/(Re,%) = 10 ...mixed convection regime (both free and forced
convection are important)

In the mixed convection regime, following equation is used to calculate

the Nusselt number:

NS = Nufomsdm x Nufreem

A value of m = 3 is generally recommended. Positive or negative sign is

taken if the free convection flow occurs in the same or opposite direc-

tion to that of forced convection.

10.8 Summary

In natural (or, free) convection, fluid flow is caused by density differences as a result of temperature differences.
Natural convection is, in fact, a preferred mode of heat transfer in many practical applications, since there is no
need for an external fan or pump to cause the flow, and is therefore more economical and reliable. Cooling of
electronic devices, transformers, motors, transmissicn lines, etc. are some of the common examples of applica-
tions of natural convection heat transfer. :

In this chapter, first, an outline of the method of solution of the relevant conservation equations by the
approximate integral method was given. Solutions for the case of natural convection are move difficult as com-
pared to the case of forced convection since in the case of natural convection, the momentum and energy equa-
tions are ‘mutually coupled’ which means that they have to be solved simultaneously. Next, empirical relations
for several geometries and situations of practical importance were listed. Several examples have been worked
out, demonstrating the use of these correlations.

Questions
1. Explain the circumstances under which natural convection occurs. Differentiate between natural and forced
convection.
2. What is the criterion from laminar to turbulent flow in natural convection?

3. What is the physical significance of Grashoff number? Compare it with Reynolds number.

4. Use the principle of dimensional analysis to establish a relationship between Nusselt number, Grashoff number
and Prandtl number. [M.U.]

5. Why is the analytical solution of free convection problems more involved as compared to forced convection
problems?

6. State two important applications of heat transfer in an enclosure. What is meant by ‘aspect ratio’ of an enclo-
sure?

NATURAL (OR FEREE) CONVECTION
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10.

What is a ‘heat sink’? Why are fins provided in a heat sink?

Explain why there is an ‘optimum’ spacing between fins in a heat sink.

What is the criterion to decide if the natural convection is negligible or not, in forced convection heat transfer?
How is the Nusselt number calculated in ‘mixed convection’ regime?

Problems

1.

10.

11.

A hot plate 35 cm high and 1.1 m wide at 160°C is exposed to ambient air at 20°C. Using the approximate
solution, calculate the following:
(i) Maximum velocity at 10 cm from the leading edge of the plate (ii) boundary layer thickness at 10 cm from the
leading edge of plate (iii) local heat transfer coefficient at 10 cm from the leading edge of the plate (iv) average
heat transfer coefficient over the surface of the plate (v) total mass flow through the boundary (vi} total heat loss
from the plate, and (vii) temperature rise of air.
A het plate 25 cm height and 100 ¢m width is exposed to atm. air at 20°C. The surface temperature of plate is
100°C. Find the heat loss from both the surfaces of the plate. If the height of the plate is changed to 50 cm, what
will be the change in heat loss? Following empirical relation may be used: Nu = 0.59(Gr-Pry/*
Properties of air at average temperature are:
=106 kg/m’; v=1897 x 10 " m?/s; C, =1004 J/kgK ; k = 0.029 W/mK M.U]
A hot plate 100 cm height and 25 em width is exposed to atm. air at 25°C. The surface temperature of plate is
95°C. Find the heat loss from both the surfaces of the plate. If the height of the plate is reduced to 50 cm and the
width is increased to 40 cm, what will be the change in heat loss? Following empirical relation may be used:
Nu = C{Gr . Pr)" where
C=059and m = 1/4 for (Gr-Pr) < 10°%, and
C=01and m=1/3 for (Gr-Pr) > 10°
Properties of air at average temperature are:
p =106 kg/m’; v=1897 x 10°m’/s ; C, ~1004 J/kgK; k= 0.029 W/mK [M.U]
A hot square plate 40 cm x 40 ¢m at 100°C is exposed to atmospheric air at 20°°C. Find the heat loses from both
surfaces of the plate if:
(a) the plate is held horizontal.
(b) the plate is held in vertical plane.

Properties of air at average temperature are: p =1.06 kg/m® v =18,97 x 107 m%/s
C, =1004 J/kgK; k =2.89 x 107 W/mK;
Following empirical relations may be used to find average heat transfer coefficients:
Case(a): Nu = 0.13(Gr-Pr)1/*
Case(b): For lower surface Nu = 0.35(Gr. Pr)14

For upper surface Nu = 0.71(Gr prytit [M.U.]
A flat, vertical electrical heater is 0.5 m x 0.5 m in size and dissipates heat to still, ambient air at 20°C. Heat
generation rate is 1 kW/m’ Determine the average heat transfer coefficient and the average suiface tempera-
ture.
A vertical steel plate, 0.5 m x 0.5 m in size and 3 mum thick, at an uniform temperature of 160°C, is exposed to
atmospheric air at 20°C. Find the approximate time required for the plate to cool to 30°C, if the heat transfer
coefficient in natural convection for the vertical plate is given by: k = 142 x (AT/ L)%, For steel, p = 7800 kg/ m’,
C, = 473 ]/ (kgK).
A 4 cm diameter steel ball at 160°C loses heat only by free convection to ambient air at 20°C. Calculate the time
required for the temperature of the ball to reach 30°C. For steel, p = 7800 kg/m”, C, = 473/ (kgK).
{a) A vertical pipe, 7.5 cm OD, 1.8 m long, has a surface temperature of 90°C. If the surrounding air is at 30°C,

what is the rate of heat loss by free convection from this cylinder?
(b) 1If the pipe is inclined to the vertical at an angle of 30 deg. during installation, how does the heat loss/m
change?

A horizontal metal plate, 0.6 m x 0.6 m, is exposed to sun and receives radiant energy at the rate 170 W/m®. If
the heat transfer from the plate occurs to the surrounding air at 20°C by free convection only, find the steady
state temperature of the plate. Assume that the bottom of the plate is insulated.
A horizontal, steam pipe of 10 cm OD runs through a room where the ambient air is at 20°C. If the outside
surface of the pipe is at 160°C, and the emissivity of the surface is 0.85, find out the total heat loss per metre
length of pipe.
A horizontal pipe carrying steam passes through a large room and is exposed to air at 30°C. The outer diameter
of pipe is 20 cm. If the surface temperature of pipe is 200°C, find the loss of heat per metre length of the pipe by
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12,

13,

14.

15.

16.

17.

18.
19,

20.

21.

22.

23.

24,

25.

26,

27.

28.

29.

convection and radiation. Assume em1551v1ty of the plpe surface as 0.8. Properties of air g1ven below:
k= 0.0331 W/mK; p = 0.8826 kg/m’; v=24.83 x 10°%; C, = 1014 | /kgK.
Approximate empirical relation can be assumed as Nu = 0.53 (Rn)>® for (10° < Ra < 10°). MU]
A tank contains water at 20°C. The water is heated by passing steam through a pipe placed in water. The pipe is
3 m long and 5 cm in diameter and its surface is maintained at 100°C. Find the heat loss from the pipe if the pipe
is kept horizontal.
Following empirical relations may be used: Nu = C{Gr.Pr)™, where
C =053 and m = 0.25 when 10° < Gr.Pr < 10, and
C =013 and m = 1/3 when Gr.Pr > 10°.
A fine wire of 0.5 mm diameter is maintained at a constant temperature of 260°C by an electric current. The wire
is exposed to air at 1 bar and 20°C. Calculate the heat transfer coefficient and the current flowing through the
wire to maintain the wire temperature if the length of wire is 1 m. Electrical resistance of the wire is 8 ohms/m.
A spherical bulb of 5 cm diameter, with its surface temperature at 120°C, is exposed to still air at a temperature
of 20°C. Determine the rate of convective heat loss.
A metal block is of 6 cm x 9 cm section and is 15 cm in height. Surface temperature of the block is 80°C. If it is
exposed to air at 20°C, determine the rate of convective heat loss.
A circular disk heater of 3 cm diameter is maintained at a temperature of 60°C and is exposed to ambient air at
20°C. Calculate the free convection heat loss.
A short, solid vertical cylinder, 15 em diameter and 15 cm high, is at 260°C and is exposed to air at 40°C.
Estimate the value of average surface coefficient of heat transfer for the entire outside surface.
Salve Problem 10.11 using simplified equations for air. Refer to Table 10.3 for appropriate equation.
Helium gas at 2 bar pressure is contained between two horizontal panels separated by a distance of 20 mm. The
lower panel is at a temperature of 80°C and the upper panel is at 20°C. Calculate the heat transfer rate by free
convection per sq. m. of the panel surface.
Air gap between the two glass panels of a double-pane window (0.8 m wide x 1.5 m high) is 2 ems. If the two
glass surfaces are at 25°C and - 5°C,

{a) determine the rate of heat transfer through the window.

(b) Verify the result with formula from Russian literature.

{c) Show graphically how the heat transfer coefficient varies as the gap spacing.
Two vertical plates of size 40 cm x 40 cm are separated by a space of 3 cm and the gap is filled with water. Plate
temperatures are 60°C and 20°C. What is the heat transfer rate? Verify the result with formula from Russian
literature.
In a solar flat plate collector, the plate is 1.5 m high and 2.5 m wide, and is at a temperature of 120°C. The glass
cover plate is at a distance of 3 cm from the cellector surface and its temperature is 40°C. Space in between
contains air at 1 atm. If the collector plate is inclined to the horizontat at 30 deg., determine the heat transfer
coefficient and the rate of heat loss.
(a) Air at 1 bar fills the gap between two concentric spheres of 10 cm and 8 cm, respectively. Inner sphere is at
90°C and outer sphere is at 30°C. Calculate the free convection heat transfer across the gap. (b) Verify the result
with formula from Russian literature,
A long tube of 0.2 m OD is maintained at 130°C. It is surrounded by a cylindrical radiation shield, located
concentrically, such that the air gap between the two cylinders is 20 mm. The shield is at a temperature of 30°C.
Estimate the convection heat transfer rate per metre length. Verify the result with formula from Russian litera-
ture.
A turbine blade is cooled by free convection with water as coolant. The cooling passage is 8 mm in diameter and
7 cm long. The blade velocity at a mean radius of 20 ¢m is 210 m/s. The hole surface temperature is at 200°C and
cooling water temperature is 60°C. Find the average heat transfer coefficient and the rate of heat loss.
A 15 cm diameter steel shaft whose surface is at 150°C is allowed to cool while rotating about its own horizontal
axis at 3 r.p.m. in an environment of air at 30°C. Find the initial rate of heat loss.
A 2 m diameter disk rotates at 600 r.p.m. has its surface at 60°C. Surrounding air is at 20°C. Find the value of
convection coefficient and the rate of heat transfer from one side.
A sphere, 0.1 m in diameter is rotating at 30 r.p.m. in ambient air at 20°C. The sphere is at 160°C. Estimate the
rate of heat transfer.
Consider a vertical heat sink with fins as shown in Fig. Problem 29.
The vertical heat sink, 0.35 m wide x 0.15 m high, is provided with vertical, rectangular fins of 1 mm thickness
and 20 mm length. Base and surface temperature of fins is 80°C and the surrcunding air is at 20°C. Determine
the optimum fin spacing and the rate of heat transfer from the heat sink by natural convection.
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W=0.35m k\\.t::zomm

Quiescent air, T, = 20°C

L=015m

T,=80°C

-t =1mm

FIGURE Problem 10.29 Free convection from vertical heat sink with fins

30. - Water at 20°C with a velocity of 5 cm/s flows across a horizontal cylinder maintained at a temperature of 66°C.
Is the heat transfer by free convection significant? If so, calculate the rate of heat loss by combined free and
forced convection. What will be the situation if the fluid is air at atmospheric pressure?

31. Consider a 3 m long vertical plate at a temperature of 80°C, kept in still air at 20°C, What is the forced motion
velocity above which free convection heat transfer from the plate is negligible?

Atmospheric air flows through a 25 mm diameter horizontal tube at an average velocity of 25 an/s. The tube is

maintained at 150°C and the bulk air temperature is 30°C. Estimate the heat transfer coefficient if the tube is 0.35
m long.

32
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